AFRL-IF-WP-TR-2001-1506

INCREMENTAL SOFTWARE EVOLUTION
FOR REAL-TIME SYSTEMS (INSERT)

J. LEHOCZKY
P. FEILER

B. KROGH

T. MARZ

R. RAJKUMAR
B. CALLONI

J. PRESTON

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Lockheed Martin
Tactical Aircraft Systems
Mail Zone 2445

P.O Box 748

Fort Worth, TX 76101

JANUARY 2001

FINAL REPORT FOR PERIOD 01 SEPTEMBER 1997 — 30 DECEMBER 2000

Approved for public release; distribution unlimited

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GQVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION

SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

Y 5

NNETH JAMES S. WILLIAMSON, Chief
Project Engineer Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

/?/a/ﬁgé/tqﬁ?
WALTER B. HARTMAN
Acting Wright Site Coordinator
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

nstructions, searching existing data sources, gathering and

and fo the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

January 2001

Final Report, 09/01/1997 — 12/30/2000

INCREMENTAL SOFTWARE EVOLUTION FOR REALTIME SYSTEMS C: F33615-97-C-1012
(INSERT) PE: 62302E

PR: 3090

TA: 01
WU: 13

J. LEHOCZKY, P. FEILER, B. KROGH, T. MARZ, R. RAJKUMAR, B. CALLON],
AND J. PRESTON

Carnegie Mellon University Lockheed Martin
5000 Forbes Avenue Tactical Aircraft Systems
Pittsburgh, PA 15213 Mail Zone 2445

P.O Box 748

Fort Worth, TX 76101

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AFB, OH 45433-7334
POC: Kenneth Littlejohn, AFRL/IFTA, (937) 255-6548 x3587

AFRL-IF-WP-TR-2001-1506

Approved for public release; distribution unlimited.

INSERT is a capability package designed to support safe on-line upgrades of software components in real-time systems and the safe
insertion of new capabilities into those systems. High reliability is guaranteed through the use of run-time monitoring and switching.
The INSERT run-time monitor can detect and overcome semantic, data, and system errors. The run-time system is complemented
with tools for off-line analysis and design to support development and implementation of INSERT -protected systems. This report
documents the architecture and the associated middleware. In addition, the capability package contains methods for verification of
the INSERT switching rules and Analytic Redundancy Component (ARC) based verification methods (which are also referred to as
dependency tracking methods). The report documents a major experiment in which the INSERT architecture was implemented in the
Lockheed Martin F-16 ground-based simulators. The Automated Maneuvering and Attack System (AMAS) algorithm was then
installed. The INSERT architecture successfully protected the system against residual software faults. A Lockheed Martin cost
estimation process concluded that the INSERT architecture could result in a reduction of 20% in labor hours in a reaktime safety
critical system.

110
Real-time systems, Safety-critical systems, Software upgrades, Simplex architecture, F-16, R RN
AMAS algorithm
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

TABLE OF CONTENTS

LISt Of FIGUIES ..uuuiniiiiiiiiiceecccccccccccccccc e viil
LISt Of Tables ...uuuuniiiiiiiiiicccccccccecccccc e X
1. INtrodUucCtioncvviiiiiiiiiiiiiiiiiieeeeeeee e 1
1.1 Application-Independent Run-Time Services (Middleware)........cooovvviveiiieiiiiiiieiiniiiee e 1
1.2 Data Fusion Integrity Processes (DFIP) ... it esvieeesrree e ssesaeesssennae s 2
1.3 Dependency Tracking TOOoISicuiiii i iiiiie it cririeeesirreeesssesaeessssseeesssssaeesssssseesssssseeas 2
1.4 Analysis Tools for Application-Dependent Switching Rulesccoooooiiiiiiiiiiiie 2
1.5 Application-Dependent Switching Rules for High-Performance Avionics Systems 3

2. Analytical RedundancCyccccoooeeiiiiiiiiiiiiiiiiiiiiiieieceeenns 5

B T 5115 (0T 15707 510 o PRSPPSO 5
2.2 A Fault-Tolerant COMPONENLciiiiieeiiiiiiieeiiiireeirirteeesesrseeesssssaeesssssseessssssreesssssseessssssees 5
2.3 Component EVOIUIION.......cciii ittt criite e siiiteessirteeesssraaeessssaeessssssaessssssaeesssssseessssssees 7
2.4 Variability 11 ARCS ...uiiiiiiiiie et eerrite e siirteessetaaeeesssssaeesssssaaessssssaesssssseeesssssseessssssees 7
2.5 ARC IMPIementation.ccivieiiiiiieeieiiieeeseiteeesestraeessssseeessssseeesssssseesssssseessssssseesssssseessssssees 9
2.6 Simplex-Based Application DesSi@N.........coooiiiiiiiiiiiieiiiiiie e ssireeeesirreeessrsaeesssssseessssssees 10
2.6.1 Assumptions about the APPHCAtION.......ccciiiiiiiiiiiieiiiiie e iririeesrrteeeserreeessrsaeesssssseessssseeas 10
2.6.2 Making a Component Analytically Redundant...............ccocciiviiiii e 11
2.7 Supporting an UPGTadeviiiiiiiiiiiiiiieeiiiieeeietiteessrsteessssseessssseessssssseesssssseesssssseessssssees 11
2.8 Introducing New FUNCHONAIILYccoiiiiiiiiiiieiiiiie e isiiieessireeesserseeessrsaeesssssseesssssseesssssseens 11
2.9 Periodic Execution Behaviorcoci i 12
2.10 DiStrDULEd ARCS ..ottt et e et sttt et et et e e e eneeas 12
23T MUBE-ARC SYSEBITIS L1ieiiiiiieiiiiiieeiioirreeesesreeeiesrseeesssssseesssssseesssssssesssssssesssssssessssssseessssssees 12
2.12 Multimode Components and ARCS........cciiiiiiiiiiiieiiiiie e eriieeerirreeesirreeesssrseeesssssseeasssssnes 13
3. MiddIeware SEIVICES........uuuvviiiiriiiiiiiirriieireirerrereeereaeee, 15
3.1 The Distributed Publisher/Subscriber Communication Modelccccveiveiineiiniiiee e 15
3.2 BackgroUnd........ooioiiiiiiiiiieeiiite ettt eesrtee e st ae e srtaaaeestraae e s stsaeeestraaeaassrsaeeestsaeeesssraaeas 15
3.2.1 Objectives for a Distributed Real-Time Systems Framework...........ccccccovevviveiiviiieeinennnnnn 16
3.3 The Real-Time Publisher/Subscriber Communication Modelccoooe i, 16
331 Related WOTK .ottt et e et e et e e e e nreeeneeeens 17

it

3.3.2 The Communication MOAELoooiiiiieeii ittt reeae e e e e e e aaaaaaaeeeeeaeaes 17

3.3.3 The Application Programming INterfaceccccccoeviiiiiiiiiiiieiiiiiie e cirieeesreee e sensaeeeseenneeas 17
3.3.4 Fault-Tolerant Clock SynChronizZation...........ccccveireiiieeiicinieeeiiiiieearireeeesesseeesssnsseessssssees 18
3.3.5 UPGrading 8 PrOCESS ..iovviieiiiiiieeiiiiieeiieirreeesstrteesssnsseesssssseeesssssseesssssseesssssssessssssseessssssnes 19
3.4 The Design and Implementation of the RT Publisher/Subscriber Modelcccocceiie. 19
341 The IPC DaCIMON ..ceoiiiiiiit ettt ettt ettt e ettt e e eee e neee ettt e smseeeneeeenneeeanseeanneeeans 20
3.4.2 The CHent-Level LIDTarycccccccooiiiie e iiiie e srvieeesinreeesinsaeesssssseesssssssessssssseesssssseeas 20
3.4.3 Sequence of Steps on Various Calls ... crrre e esrree e srnaeessseraee s 21
3.4.4 Meeting the Goals 0f the Design........coiviiiiiiiiiiii e esrrae e sstraeessssraee s 21
345 IMPIementation ASPECLS. . ..iciuureeiriireeiieirreeeisrreeessrsreeersssseeesssssseesssssseessssssseesssssseessssssees 22
3.4.6 Schedulability ANALYSIS .iviiiiiiieiiiiieeiiciiiee et e ssrreeeseirreeessstsaeesssssseeesssssseesssssseessssssnes 23
3.4.7 ObJECt HIBTATCRY ...iviiiiiiiieiiiiie e ieiiie e criieeesiraeessiisaeessstssaeesssssaeessssssaessssssseesssssseesssssseens 23
3.5 Performance of the Publisher/Subscriber Model..........c.ooociiiiiiiiiiii s 24
3.5.1 The Rationale Behind the Benchmarkingcccooe i einee e s 24
3.5.2 The Benchmark Codeot et e et e e eeeeneeeens 24
3.5.3 Performance of Vanilla UDP/IP and POSIX Message QUeUES........ccvvveireivireeirinnieeercnnenens 26
3.5.4 Publication/Subscription on a Single NOde..........covviiiiiiiiiiiiiie e sinee e ssenaee s 26
3.5.5 Subscription from a Remote NOAEcciviiiiiiiiiieiiiiee e ciiee e srirreeesirsaeessnsaeesssssseeas 28
3.5.6 Subscription from Multiple Remote NOAESoiiiviiiiiiiiiiiie e esreee e sireeessenaee s 29
3.5.7 LessOns Learnedccviiiiiiiiii ittt ettt et ettt e e tee e enreeeneeeens 29
3.6 Concluding Remarksoooiiiiiiiiiii ettt e esirree e sitsaeesssesaaeesssrsaeesssssaeessssssnens 30
4. Verifying INSERT Switching Rules............cccccoeennnni.. 31
O 115 (014 o7 T o PP RRR 31
A O 1 TTo] |41 1 RSP URSR 32
4.2.1 Model Checking for Hybrid SYSIEMScccviiiiiiiiieiiiiiieeiiiieeeririeeesirseeessnseeesssnssesssssssees 32
4.2.2 Entering System Models in Checkmate...........coocvviiiiiiiiiiiiiiec e snsee e srineeeessnaee s 34
4.2.3 RUNNING the VerifiCatION.......iiiiiiiiiiiiieeiiciieeeietiteesstrteessssseessssseessssssseesssssseesssssseessssssees 36
4.3 The F-16 ProbDIEm....c.ciiiii ittt e et e e e e e s meeeeneeas 37
A.3.1 F-T0 DYNAIMIICS .1iiiiiviieiieiiieeiiiiteeeststeeesessseeessssseeesssssseesssssseesssssssesssssssesssssssessssssseesssssseees 37
4.3.2 Application of SImMplex 0 the F-T16.......cooiiiiiiiiiiii e srsee e ssinaeeeseraee s 38
4.4 CheckMate Model of the F-16 Problem ..., 39
4.4.1 Switched CONtINUOUS SYSLEIM.....iiiiieiiieeiieirieeeierreeessrreeessessseeerssseessssssseesssssseesssssseesssssees 39
4.4.2 Polyhedral Threshold BIOCKSciiiiiiiiiiiiie ittt e e sirrae e stsae e sseenaaesssenaae s 41

v

4.4.3 Finite State Machine BlOCKooouuiiee it et e e e e e e e e e e aaaaaeseeeeeaaennnns 42

44,4 SPECHICALIONS ..vveiiiirieeeieiieeeiitrteessrsreeasossseeesssssaeesssssseesssssseesssssssesssssssesssssssessssssseessssssees 42
4.5 Verification Procedure and Resultscccooiiiiiiiiiiii e 42
4.5.1 Parameter Selection and BNyccoiiiiiiiiie e iiie e cririeeesireeeesirseeessnsaessssnssesasssssnens 43
4.5.2 Funneling Approach to Avoid Numerical Problemsccccccveiiiiiiiiiiiie e 45
4.5.3 Positive Verification Result ... e 46
107 Tod 111 [o PR URRR 47
5. ARC-Based Application Validation...............cccceuveeeee. 49
o O 015 £ L 5103 o PSPPSR 49
5.2 Issues in AvIonics SYSteM UPZrades......ciiviiiieiiiiiieeiiiieecrerieeessireeesserseeessssneesssssseessssssnes 49
5.2.1 General ODSEIVAIONS. .. . o it ittt et eeeee ettt e ettt eeeeeeeteeeaeeeeaneeesseeeanseeeaneeeaseeeanseeenneeeans 49
5.2.2 Visual Bombing SightS.......cccoiiiiiiiiiiie et criteecsirreeesitsaeesssirseeesssrsaeessssaeessssrseeas 50
S22 3 INS UPETAAL ..eveiiiiiieiiiiiieeeiiiiteesrtrteeesrteeesstsaeesssssseessssssaessssssseesssssseesssssssessssssseessssssnes 52
5.2.4 Multiple Modes and INSERT ..ottt cririee e straeesssiraeessssssaeesssssaeessssssnens 52
5.3 Identifcation of Inconsistency through System Models..........cccooviiiiiiiiiii i, 53
5.3.1 Modeling Component IntercoNNECtion StIUCTUTES.......vveiieivrreeiiirreeirerreeerersreessnsseesssssees 53
5.3.2 Refined Input/Output Port SPeCIfiCAtIONSicviieiiiiiieeiiciieeeeiiireesrirreeesesrsreesssnsseessssssees 55
5.3.3 Assumptions and Assertions as Propositional Predicatesoccoveiveiieeiiciineeininieecninennnn 56
5.3.4 Component Properties and Property CONStraintS..........veiieivvreerriiveeeireireeeereisseeessnsseesssssees 57
5.3.5 Incremental INCONSISIENCY ANAIYSIS 1vviiiiiiiieiiiiiieeiiiiieeeierreeessrraeesssrseeesssssreesssssseessssssees 58
5.4 Managing Configuration INCONSISIENCY . ..ccuvviiiiiiiieeiiiiiieeirriteesriieeessirreeessrsaeesssnseeessssssees 59
5.4.1 ARC-Based Component MOAEHNG........ccccvviiiiiiieiiiiiieeiirieeeieiieeessirseeessrseeesssssseessssssnes 59
5.4.2 Configuration CONSITAINSuvviiiiiiiieeireirieeeietreeesserseessossseeessssseesssssseeesssssseesssssseessssssees 61
5.4.3 Run Time Recovery from Configuration INCONSIStENCYvvviiiviiieiiiiiiiieiiiireesrineeessenenens 62
5.4.4 Managing Reconfiguration REqUESES......cccviiiiiiieiiiiiieeciiieeeseiraeessirseeessrsneesssnsseessssssnens 63
5.5 Analyzing the Impact 0f Change..........cccooeiiiiiiiiiii et srrre e e sirsae e ssesaeesssnraee s 63
5.5.1 Reducing the Impact 0f Changeooiviiieiiiiie et siee e srirree e sirsaeessesaeesssssanes 65
5.6 The ANAlYSis TOOL.....iiiiiiiiiii ittt riiee sttt e sriraeessirsaeesstsaeessssssaeesssssaeesssssseessssssnens 66
5.7 SUIMIIMIATY .. .tiiiiiiie et e erecititt e e e e ere e tetaeeeeesesssssrssaaaeeesassssssssssteeesssssssssssseeeesssssssssssseeeeessssssssssees 67
6. An Application of INSERT Technology....................... 68
LT O 613 (T L 5103 o TP 68
6.2 Methods, Assumptions, and ProCedUIEScoviiieiiiiiiieeiiiiieeiriireeerirreeesirseeessssseeesssssees 69
6.2.1 Hardware and SoftWare SPECITICS ..uviiiiiiiiiieiiiiiieeiiiieecrrieeessiraeesserseeessssaeesssssseessssssnens 69

6.2.2 RISk REQUCHION SEEPS...uuiiiiiiiiiieiiiiiieeiieitieeeiitrteesserseeessrsaeesssssseesssssseessssssseesssssseessssssees 69

6.2.3 BasiC INSERT OPeratiOn.........uuiiiveiiieeiiiiireeiiirieessisreeesossseeessssseesssssssesssssssesssssssesssssssees 70
6.2.4 Modeling Practical Design CONSITAINLSiiiiiiieeiiiiiieeiieiireeiiireeesserseeesesseeessnsseessssssees 72
6.2.4.1 Reliable and Cost-Effective Migration of Code (JOVIAL to C/CH+).iivvviiiiiviiieeiiinnen. 72
6.2.4.2 Manual EITOTtoo ittt et e et e e ens 73
6.2.4.3 Auto Code from UML ToO0ISciiiiiiiiiiiii et see e eee e e eneeeens 73
6.2.4.4 The Experiment Using Automated Re-Engineering Capabilitycoovveiiviiieeininnnnn. 75
6.3 Results and DiSCUSSIONS. . e ottt ittt ittt eete e ettt e ettt e eeeeesneeeereeeemseeeaneeeeneeeanseeenneeeans 76
6.3.1 Processor Utilization Performance of INSERT Middlewareccooovvveiveiineiiviniee e 76
6.3.1.1 Data Gathering PTOCEAUIESccoiiiieiiiiiiee it e iirteeeseirreeessstsaeesssssseesssssseesssssseessssssnes 76
6.3.1.2 Data Analysis: Logging and Middleware COMPONentscccceeevevieeeieinineeininneeesnennnens 77
6.3.1.3 Data Analysis: Avionics Algorithm ProCessing.......ccccoeevvveiiiiiiieeiriiieeerennreessnneeessssnanes 79
6.3.1.4 Excess Processing Availability.......ccccooiiiiiiiiiiiiei e crirne e esirnae e sennae e sssenaee s 80
6.3.2 Efforts to Migrate JOVIAL to CH++ via UML ... snnee e eseinae s 81
6.3.2.1 Manual Conversion EffOrt...... ... e 81
6.3.2.2 EISR Tool Conversion Effort..........cooiiiiiii e 81
6.3.2.3 Code Growth: Procedural to OO Paradigm..........cccccveiiviiieiiiiiiec e cnriee e seneeeeseenanees 81
6.3.2.4 Level of EffOTt MEtTICS ..eiiiiiiiiiiiiit ettt ettt et ee et e e seee e neeeeneeesmeeeeneeeans 83
6.3.3 Evaluation of ASEP Platform for INSERT FT Capabilitiescccccoovvveiieinireeininieecnnnnnnn 83
6.3.3.1 INTOAUCTION ..ceeiiit ettt ettt et e et e e et eeeneeeereeeemseeeneeeenneeeenseeenneeeans 83
0.3.3.2 ASEDP CONCEPLS 1uuvviiiiiieeeiiiieiiiiittreeserseoirrtteeeessssosssssssteeesssssssssssseeeesssssssssssseeeeessssssssssses 83
6.3.3.3 INSERT Implementation under ASEPcccociiiiiiiiiiiiic e cnrrre e senae e sseenaee s 84
6.3.3.4 Rehost of ASEP to LynxOS and LINUX/RT.......ccoiiiiiiiiiiiiiiiiec e eninrre e seneeesssnnaee s 86
0.4 COMCIUSIONS ...ttt ettt ettt et te e ettt e te e e ettt e s meee e neeeeaneeeamseeeneeeenseeeamseeeaneeeenseeeanseeenneeean 87
6.4.1 INSERT Fault-Tolerant TeChNOIOZIES.........cciviiiiiiiiiiiieiiiiieciiireeerirreeesirsreesssnsaeesssssseeas 87
6.4.2 Legacy Conversion t0 Gt .o iiiieeciiiieessirieessirseeesssnsaeesssssseessssssseesssssseessssssnes 87
6.4.3 ASEP Fault TOIETANCEeiiiiiiiiiiiiit ettt ettt et e et e e st e e e e eneeesmreeeneeeens 87
7. Cost Reduction Benefits of INSERT Technology......... &8
A B 15 (T L 5103 o TP PRSPPSO 88
7.2 BaCKGIOUNGoiiiiiiiii ettt sr e e e sitrte e sstsaeeesssssaeesssssaeessssssaessssssseesssssseessssssnens 88
7.3 R ESUIES ettt ettt et er ettt en e e et et e e et e st enee e e eneenteseeeeennens 88
7.4 AddIiONAl DEtailsoeiiiiiiiii ittt et e et e e reeeneeeens &9
RETCIONCES ... et 91

vi

List of Acronyms

Vil

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

List of Figures

A Multivariant COMPONENL.........ccciireiiiiiieeiriireeererreeererseeessorsreesssssseesssssseeesssssees
Analytically Redundant COMPONENEcciviiiiiiiiiiiiieiiiieeeeiieeeseireeessesseeesnnneees
Achieving the Control ObJECHVE.........iiviiiieiiriiieeiiiieeerrieeeserrreessesaeessssseeessssees
Component EVOIULION........ooiiiiiiiiiiiie ittt erriee e sitsaeessiraeeesssrsaeessnsseesssssseeas
ARC with Multiple CONSTAIMNLS .. cuvvieiiiiiieeiiiieeeriieeerrieeessrseeessrsseesssssseeesssssees
ARC Process StIUCLUIEeiiiiiiiiiiiiiiit ittt ettt ettt e e sireee e seteee e eerreeeesareeeees
Logical Configurationccccceiieiiieiiiiiie e iriiieesriieeesiraeeeseirseeessrsaeessssssessssssseeas
The Application Programming Interface for the Real-Time
Publisher/SubscriberParadigincoiviiiiiiiiiiiic et ccrire e sirae e ssisseeesennee s
Benchmarking Code on the “Sender” Side..........coovviiiiiiiieiiiiin e,
Benchmarking Code on the “Receiver” Side.......covviviiiiiiiiieiiiiie e crineeeesinenees
Hybrid AULOMAtON.cooiiiiiiiieeiiiiee e riite e srrteessraeeestrsaeesssrseeesssssseesssssseesssssseens
Polyhedral Invariant Hybrid AUtOmatonccccveiveiiieiiiiiie e seireeeesinneeesenneeas
State Space of Original System; State Space Partitioned for QTS............ccccoiiiene
A CheckMate Block DIagram.......ccccceiieiiiieiiiiiiieeiiiieeciirieeesnieeesssnsaeessnsseessssnseeas
Longitudinal and Lateral F-16 DynamicCs.......ccccccoveiiiieiiiiiieeiiinireesninieessenseeesnnenees
CheckMate Model of the F-16 Autolanding Problemccccocoivviiie e,
PTHB Regions (in the dv versus Height Space)c.ccccoeviieiiviiiieiiiiiiee e
F-16 Finite State Machine_decision_logiCcccccoveiiiieiiiiiiieiiiiie e e erinneeesineeeas
Polyhedral Face EHMINation.........ccccceiiiiiiieiiiiiieeiiiiieeeiirieeesensreesssnsaeesssssseessssssneas
Hustration of FUNNEHNEGcoiviiiiiiiie it siree e sriraeeesirsaeessesaeesssnnnaeas
Height Segments for Full Verificationccccceiieiiie et csinneeesineees
Verification results in the dv versus Height Plane for Selected Glidescope

SEEIMICIIESttvveeeeeiereiitirtteeeesereseneraeeeeesassssssssaeeeesasssssssssseeeesssssssssssseeeesssssssssssneeeens
Vistual Bomb Sightcooiiiiiiiiiii it criie e esrree e srsee e ssrsaeesssssaeeessssnaeas
Interconnected ARC-Based COMPONENLSvvviiiviiieeiiiiiieeiieiieeeiiireeessrnreeesssseeenes
INSERT ATCRItECIUIE ..eeuietiiiieiiit ettt eieeeeiteeeiteestee et ee st e e smeeeeneeesmreeeeneeeennes
INSERT MESSAZIIZ ...uvvieiieiiiieeiirireeaiirreeeiesrsreesssnsseesssssseesssssssessssssseesssssseessssssseeses
RTOS SChedUING......coooiiiiiiiie ettt srrte e esrreeesirsaeesstsaeesssssseeesssssneas
Object Model DIagraiml.......ccivviiiieiiieeiiiiieeeriieeerrieeesirseeessnsseeessrsaeesssssseesssssseens

viii

Figure 29. 1750 FP Format............

Figure 30. ANSIIEEE 754 FP FOImMAtc.coociiiiiiiiiiiiiiiiiit et eseee e e

Figure 31. ASEP/AMAS Test Bed

X

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.

List of Tables

Basic SYStem IPC COStS. . uiiiiiiiieiiiiiiie ittt e iiirreesrirreeessraeeesssrseeessssssessssssseessssssees 27
Round-Trip IPC Costs for Multicast on a Single Node.........ococooiiiiiiiiiiininn. 27
Round-Trip IPC Costs for Multicast on a Single Nodec.cocoiiiiiiiiiiiine 28

Round-Trip IPC Costs for Multicast to Multiple Receivers on One Remote Node....28

Round-Trip IPC Costs for Multicast to Multiple Recipients on Many Remote

N OGS -ttt ettt ettt ettt ettt et e e et e e et et e ne e e e ree e enreeeeneeeennes 29
SCSB Parameters . ooo.ueii ittt et ettt e e s e s e ree e e sreeee e 34
State Variables and INPULSooooiiiiiiiie et rirrre e sirae e sretrseessssnsaeesnes 37
Safety and Baseline COnStraingS........ccovveiieiiieeiiiiieeeieirieeererseeesssseeessessseesssssseeeses 38
Fields of the approx_param StIUCTUIEciiviiiiieiiiiieeeriieeeserieeesseraeesseerseeesssnseeas 43
Results of Funneling Verification Procedure..........ccccceiveiiieiiiiine e crinnee v 46
PrOCESS PTIOTIHIES 1 ettt ettt ettt e et e et e et ee et e e smreeesneeeeneeas 71
AMAS Rehost to Final INSERT C FOrmatcooviveiiiiiiieeiiiieesnirieessnnseessnneneas 73
Event Message LOZZINGcovivvi it iiiiie e eriiteeesirteeesireeeessrseeessssssesssssssesssssssees 76
MiddIeware Data.........ccoii i e e eneeas 78
Processing Times and Middleware UtiHzationccceevieiiviiin e e 80
Engimeering Effort for UMLoooiiiiiiiiii e srrre e srsne e sseinsa e sssenaae s 81
Second Engineering Efforts for UMLcooiiiiiiiiii e sinnne e 82
Code GTOWEh IMELTICS ..eiiiiiiiiii ettt sttt e e iee e s e e eeneee e neeesmreeenneeeens 82
Run Results in the SEER-SEM Estimation Model..........cccccccoeviiiiiniiiniiiiine e, 88
SEER-SEM Run Parameters.........oieiiiiiiiiii it eniieee e eieee e erieeeeesieeeeeeaes &9

1. Introduction

This document presents the final report of the INcremental Software Evolution for Real-Time
Systems (INSERT) Project. The project was carried out during 1996-2000 by Carnegie Mellon
University and Lockheed Martin Tactical Aircraft Systems (LMTAS) with the support of the
Defense Advanced Research Projects Agency (DARPA) Evolutionary Design of Complex
Software (EDCS) Program and the Air Force Research Laboratory (Wright-Patterson) under
contract F33615-97-C-1012.

The INSERT project is a capability package designed to support safe on-line upgrades of
software components in real-time systems and the safe insertion of new capabilities into those
systems. High reliability is guaranteed through the use of run-time monitoring and switching. The
INSERT run-time monitor can detect and overcome semantic, data, and system errors. The run-
time system is complemented with tools for off-line analysis and design to support development
and implementation of INSERT-protected systems.

The INSERT package aids in the construction of upgradable, explicitly fault-tolerant systems.
Several upgrade strategies can be supported, including the following:

e upgrading legacy systems

s inserting new functionality

¢ enhancing existing functionality (incremental evolution)

s constructing virtual federated systems.

The protected, analytically redundant systems constructed with INSERT can contribute to several

other aspects of the software development process, including the following:

e carly live system testing (i.e., permitting system testing in the live environment without
compromising safety)

s nonstop testing (i.e., recovering and continuing testing though errors that ordinarily stop
testing occur, a feature that is especially valuable in flight testing)

o factorial experimentation (i.e., several experiments can be scheduled with INSERT managing
the switching between cases and protection from faults).

The INSERT capability package consists of five major components, described in the following
subsections.

1.1 Application-Independent Run-Time Services (Middleware)

The INSERT run-time services support dynamic binding, monitoring, fault detection and
switching. The dynamic binding services permit the interconnection of related subsystems during
run-time processing, while preserving the execution time and address space partitioning of the
system. The activities of dynamic binding services are done with the support of a real-time,
publisher/subscriber interprocess communication messaging service. This service may also be
externally managed, allowing system operators to add and delete system components, as well as
to enable or disable the Interprocess Communication (IPC) links of a system component. System
visualization and control tools support system management using an application-independent
facility.

A prototype analytically redundant application environment is also provided in the INSERT
package, allowing system developers to construct analytically redundant execution environments

quickly and easily. Application-independent methods of constructing monitoring and control
functions have been developed, and are being evaluated.

These middleware services can play a role in many phases of the software development cycle,
including testing, implementation, deployment, run time and maintenance.

1.2 Data Fusion Integrity Processes (DFIP)

The INSERT software architecture uses standard signal conditioning methods for sensor input
and both DFIP-in (detection of input data errors) and DFIP-out (detection of output data errors
caused possibly by semantic errors in the software) to detect and/or correct or compensate for
data errors.

The DFIP capabilities contribute to run-time safety and hence are a part of the deployment phase
of the software development cycle.

1.3 Dependency Tracking Tools

Previously hidden dependencies between system components (especially application-specific
semantic and time-sensitive dependencies) are captured in an architectural system model. These
hidden dependencies can be identified by examination of maintenance error logs and results of
root cause analysis. The system model can then be incrementally enriched to reduce the hidden
dependencies. Using such system models and static analysis tools, one can identify configuration
nconsistencies in multivariant components and determine version constraints to semantic
configuration consistency to be checked at run time. Analysis tools can also identify the set of
components that depend on the changed component whose assumptions and constraints might be
violated by the change. Determining the set of affected components allows developers to better
estimate development efforts, and helps keep validation and testing efforts in proportion with the
scope of change.

Dependency tracking tools contribute to the design, testing, implementation and maintenance
phases of the software development cycle. They also identify sets of changes that must be made
together to ensure correct system behavior.

1.4 Analysis Tools for Application-Dependent Switching Rules

The application-dependent switching rules in an INSERT analytically redundant unit (ARU) may
be derived using heuristics and past experience. To certify that the switching rules will provide
the desired protection against software faults, a new analytic method has been developed to
analyze the reachability of systems with both discrete dynamics (the INSERT switching logic)
and continuous dynamics (the environment and continuous actions of a given variant within the
ARU). Properties of finite-state models generated automatically from the complete system
dynamics are analyzed to verify the correctness and completeness of the switching rules. The
verification tools are implemented in Matlab with a graphical user interface (GUI).

The INSERT tools for switching rule verification fall into the test phase of the software
development cycle, which includes analysis tools.

1.5 Application-Dependent Switching Rules for High-Performance Avionics
Systems

A key capability of INSERT is the ability to protect the system from arbitrary semantic faults that
could be introduced by software upgrades. This protection is achieved through an analytic

method that creates an envelope within which the trajectories of the high-performance avionics
systems, such as the F-16, are required to lie. The determination of this envelope occurs during
the design and implementation phases of the software development cycle, and it is deployed at

run time. When combined with the temporal, spatial and system error protection afforded by the
INSERT middleware, these switching rules provide a means to safely test new components early
in the software development cycle.

The application-dependent switching rules play a role in the development, test, deployment, and
maintenance phases of the software development cycle.

INSERT can be categorized as having a level three maturity (being used by integrators or other
service/industrial organizations outside EDCS - Beta delivery). Specifically, INSERT
middleware integration in the Lockheed Martin F-16 Ground Based test simulators at Ft. Worth
has been successfully completed. The details of this integration are fully documented in this
report. Note that the INSERT architecture is based in part on the Simplex architecture, which was
developed and is being transitioned by the Software Engineering Institute (SEI). Research and
Development into INSERT is also being transitioned through the SEI Simplex architecture.
Specific transitions of Simplex include the following:

e U.S. Navy has identified the SEI Simplex architecture as a technology refreshment candidate
on the National Standards Systems Network (NSSN) program, and is considering
transitioning the technology into the DD-21 program.

e U.S. Army Aviation and Missile Command (AMCOM) has received the Beta version of the
Simplex middleware and proposed a transition plan to support Simplex methods and concepts
in the Real-Time Executive for Multiprocessor Systems (RTEMS) operating system
environment.

In summary, INSERT is unique in providing a solution to the software fault tolerance problem for
safety critical real-time systems. Moreover, INSERT offers a safe method to include new
functionality into a system. Finally, INSERT offers coverage against a wide range of error types,
supports the safe use of certain Commercial off the Shelf (COTS) products and permits early live
testing of safety-critical systems. The INSERT project was designed to develop a comprehensive
methodology for the safe upgrading of these systems accompanied by middleware, verification
software, and dependency tracking software. Most importantly, the project was designed to
demonstrate the viability of the approach on real DoD platforms and to estimate the cost benefits
that might accrue from the presence of an INSERT infrastructure. The implementation
demonstration and cost-effectiveness aspects were conducted primarily by a team at LMTAS.
The INSERT infrastructure was implemented in the LMTAS Ft. Worth F-16 Ground-Based
simulation facility. Using the INSERT, protected facility, the LMTAS team then implemented
the AMAS and demonstrated protection against injected errors. The LMTAS team also
conducted a cost-effectiveness study for real-time, safety-critical system software. They
concluded that a manpower reduction of approximately 20 percent would accrue using an
INSERT infrastructure.

The remainder of this report is organized in topical sections. Section 2 introduces the concept of
analytical redundancy as the foundation for providing run-time protection from software faults.
The run-time middleware services that support the INSERT system are described in Section 3.

Section 4 describes a new technology for performing formal verification of INSERT switching
rules and its application to the F16 autopilot case study. Tools for validation of the INSERT
component structure, including semantic features of the components, are described in Section 5.
Sections 6 and 7 deal with the application of INSERT technology to avionics systems at
Lockheed Martin. Section 6 describes the complete integration of the INSERT run-time system
into the F16 ground-based simulation system and its support of software upgrades. Section 7
presents a full cost analysis demonstrating the potential impact of INSERT technology on the
development of future avionics systems.

2. Analytical Redundancy

2.1 Introduction

Simplex [1] is an engineering approach to providing dependable upgrades to real-time systems. It
combines several fault tolerance techniques including analytic redundancy [2] to protect against
faults in upgraded software components, and it allows component variants to be replaced. From
an application design perspective, this form of fault tolerance to support dependable upgrades is
embodied in the concept of ARC [3]. Run-time support for fault tolerance and replacement is
referred to as Simplex middleware, i.e., a set of services that implements the ARC concept in
terms of services available through a real-time operating system or other form of run-time
support.

The objective of the ARC concept is to provide fault tolerance to application components in order
to make their upgrade more reliable. This is done by supporting multiple variants of a component,
by monitoring component variants for misbehavior, and by utilizing alternate variants for
recovery from faults.

An ARC is a multivariant component that supports run time variant selection. Fault tolerance is
provided by switching variants as recovery action due to observed faults. The input is made
available to all variants, and the output of each variant is passed to a Monitoring and Decision
Unit (MDU) to determine which output is passed on as the output of the component. This is
illustrated in Figure 1. The MDU supports the concept of a leader, i.e., an identified variant
whose output is intended to be used as the component output. The MDU acts as a data flow
router, passing on the output of the selected leader. From a configuration management
perspective, the MDU acts as a logical reconfiguration agent, identifying at run time the
component variant that is part of a logical system configuration.

The following sections discuss fault-tolerant components, then describe an approach to
implementing ARCs. A discussion of Simplex-based application design also appears.

Component A

Variant

Variant

Variant

E
%\CI
=l

Figure 1. A Multivariant Component

2.2 A Fault-Tolerant Component

The ARC also acts as a fault manager. Some variants are considered volatile, i.e., they may
misbehave, while others are “trusted” in that they are relied upon for recovery in case of
misbehavior.

Address space protection is used to prevent volatile variants from damaging other parts of the

application. The MDU of an ARC monitors volatile variants and takes recovery action as

appropriate. The MDU monitors

¢ whether the leader produces output in a timely manner (observing the effect of execution time
and deadline overrun as well as run-time errors that may stop or delay the execution of the
variant)

¢ whether the leader output values are in an acceptable range
whether the state of the controlled plant (either current state or projected state) is within an
acceptable region.

This acceptable region, referred to a safety region, is determined by the performance
characteristics of one of the variants identified as the safety variant. This is the variant relied upon
to recover from volatile variant faults. This approach to fault tolerance differs from a majority
voting approach. Here the output and its effects on external systems states are evaluated against a
reference model, while in majority voting the output of all variants is considered in deciding the
choice of output.

An ARC typically consists of three variants: a safety variant, a baseline variant, and an upgrade
variant, although the use of these three variants is not an inherent restriction. The baseline variant
is able to achieve the control objective of the component, while the focus of the safety variant is
on providing a safety region that may be larger than the operational region of baseline. The safety
variant’s primary control objective is to recover the system to the operational region of baseline.
In other words, the safety variant may not achieve the control objective by itself. The upgrade
variant may achieve the control objective with improved performance. Figure 2 visualizes the use
of the variants for fault tolerance.

Component A

Figure 2. Analytically Redundant Component

The protocol for managing variant leadership works as follows. The baseline variant is the typical
leader; changes are introduced through the upgrade variant, and leadership is given to it. If it fails,
control is given to the safety variant to recover from a safety region violation and then handed
back to the baseline variant, or handed directly to the baseline variant if a timeliness violation is
observed though the safety region constraint not been violated. As a result of the protocol for
variant management, the control objective of the component will be achieved with occasional
transients of recovery through the safety variant, as shown in Figure 3.

Level of)
performance gaijure Repaired

A Upgrade
\ /_ Ex%%utes
Baseline

\ Executes

- Safety

Executes

> time

Figure 3. Achieving the Control Objective

2.3 Component Evolution

Components can be evolved by updating the upgrade variant or the baseline variant (see Figure
4). Those updates may be achieved by run time replacement of the upgrade and baseline variants,
even while the system continues to operate. Modifications and improvements to the component
are instantiated as an upgrade variant. If the upgrade misbehaves, the fault tolerance protocol will
switch leadership to the baseline variant, possibly requiring recovery via the safety variant. The
upgrade can then be corrected and replaced as the new upgrade variant. Once the upgrade variant
has passed its test and is stable, it can become the baseline variant, and the next iteration of the
evolution can begin.

Réplacement

Re?ac 2

Monitoring
and

?%tching
J/

Y
Y

Figure 4. Component Evolution

2.4 Variability in ARCs

ARC:s can vary along several dimensions:
e fault recovery protocol

o fault categories

e variant instantiation pattern.

The fault recovery protocol dimension focuses on variations in the protocol used to recover from
faults. If the observed misbehavior is considered to be transient, a (limited) retry policy may be
warranted. For example, if the cause of the fault can be attributed to another system component

rather than the volatile variant, then the variant can be retried. We may also consider temporarily
delaying the retry until the faulty component has recovered.

A second dimension of variability focuses on the classes of faults to be monitored explicitly. Ata
minimum, Simplex assumes that mechanisms are in place to determine whether a variant is
providing output and providing it within the allotted time. Simplex also assumes the operation of
mechanism that determine whether a semantic condition representing the safety region is violated
(typically focusing on prevention of damage to the controlled plant). Additional application
conditions to be monitored include deviation from control objectives and certain performance
characteristics in achieving them (see Sections 6 and 7), as well as configuration constraints, i.e.,
assumptions made about which variant of other components is the active one. The result is that
additional monitoring constraints that complement the safety region constraint are provided by
the application developer (see Figure 5). Some of these constraints are specific to the component
variant and must be upgraded in conjunction with the component variant itself. The fault recovery
protocol needs to be adjusted to accommodate these additional constraints. In some circumstances
these constraints act as an enforcement mechanism, i.e., fault recovery is triggered by a constraint
violation. In other circumstances, monitoring is used to validate the model embedded in the
constraint, e.g., on-line comparison of a performance characterization of a control system
component against the actual component.

Component A

v

Performance -I

Configuration *I]

Safety region

MDU

Figure 5. ARC with Multiple Constraints

Furthermore, system faults may be observed as unresponsive volatile variant, ¢.g., failure of the
processor executing the volatile variant, or fault or intrusion in the communication mechanism
used to pass the volatile variant output to the MDU. In some cases such faults are explicitly
reported by the run-time system and can be taken into account in the fault recovery protocol.

A third dimension of variability is determined by the characteristics of the component variants
and the fault tolerance objective for the component. For example, with a component that is a
controller with a control objective, the fault tolerance objective may be to maintain this control
objective, or to prevent damage to the controlled device. In the former case, ARCs get
instantiated in one of two patterns: 1) a safety variant exists that can perform recovery as well as
pursue the control objective, or 2) a safety variant performs recovery and a separate baseline
variant achieves the control objective. In the latter case an ARC pattern with a safety variant that
can perform recovery is sufficient. Thus, we have ARC instantiations with one variant (safety) or
two variants (safety, baseline) to guarantee fault tolerance (fallback portion of an ARC). The

safety variant , and thus the fallback portion in the one variant instantiation, may exist as a pure
recovery function or may be able to achieve the control objective as well.

2.5 ARC Implementation
This section discusses the implementation of ARCs in terms of real-time operating system
services, in particular process mechanism and communication services.

The process mechanism is used to fulfill three different roles:

¢ address space protection
e execution time enforcement
s variant replacement

Variants are placed in different processes in order to prevent volatile variants from damaging the
memory space of other parts of the application. The RMA-based scheduling analysis is used to
determine schedulability of the application. This schedulability analysis assumes priority-based
preemptive scheduling and enforcement of execution time budgets of processes and threads. Run
time replacement of variants is accomplished by replacement of processes that represent the
upgrade and baseline variants. Typically, a new process instance is created and takes place of the
old process in a given process and communication topology.

An ARC is translated into the process and communication structure, as illustrated in Figure 6.
Different variants, as well as the decision unit, are placed into different processes that
communicate through a group communication mechanism. Message receive acts as a dispatch
mechanism to the process. Another process (shown in Figure 6) acts as a physical 1/0, the process
that interfaces with a device being controlled, and provides input to the ARC. In the example
shown in Figure 6, input is provided on a periodic basis. The input to the ARC is available to all
variants and the MDU via subscription to a communication channel representing the component
mput. Upon receipt of the message, the baseline and upgrade variant processes execute and
deliver their output to the safety/MDU process via ARC-internal channels.

Controlled Device
S
Baseline -
preprsorny INES RU \ y e
ysica
1o J/
| %
Experimental MbU
RU

Figure 6. ARC Process Structure

The safety/MDU process can be viewed as two execution threads, one executing the safety
variant immediately upon receipt of the component input, while the second delays execution time
until all inputs are available. In the current implementation, this is achieved in a single process
that executes the safety variant and then delays its execution until the time it expects output from

the variants. At that time, the process determines whether a variant (in particular the leader) has
provided output, and checks for safety region violation and performs output range checking.

Delay and determination of whether variants have provided output can be accomplished in
several ways. The safety/MDU process may explicitly execute a delay instruction and then
perform an unblocked receive. If its priority is higher than that of processes executing the
baseline and upgrade variant, it will preempt those processes (this is the current implementation).
The safety/MDU process may also perform a blocked receive on the output from the variants and
assume that a fault event will release the blocked receive with an appropriate error status in case
of execution time limit violation or other execution failure.

In effect, the current implementation checks for deadline violation by the volatile variants rather
than violation of execution time limits. This is doable only under the assumption that there is no
lower priority ARC running on the same processor, which has been the case for most current
prototypes. The coordinated pendulum prototype [4] consists of one ARC for each pendulum
controller and of ARCs for the two instances of the coordination of the pendulums. These ARCs
are mapped onto multiple processors in such a way that a processor either contains only the high
assurance elements of two ARCs (a pendulum controller and a coordinator), or that the volatile
components execute by themselves on a separate processor. Since the high assurance elements
(safety variant and MDU) are assumed to adhere to execution time limits and no volatile
components reside on the processor, their schedule is not impacted by volatile component
misbehavior.

While the execution of component variants and the communication of data between them requires
real-time performance, replacement of component variants can occur in the background.
Replacement can be performed either incrementally (stopping the execution of the system,
performing the replacement by process deletion and creation, and resuming execution) or on-line
(carrying out the replacement concurrently with the application execution). By executing the
replacement manager in the background, interference with the application execution can be
minimized.

2.6 Simplex-Based Application Design

This section discusses issues in applying the concept of ARC to real-time applications.

2.6.1 Assumptions about the Application

Simplex makes some assumptions about the application. It assumes that the application is
structured as a set of partitioned components that interact via message communication, at least
those components that need to be upgraded dependably and are turned into ARCs. All
information shared among components is explicitly communicated. Given the primary application
domain of continuous control systems, application components operate on data streams. These
data streams may be periodic or aperiodic (driven by external events). The primary pattern of
execution for a component is { input, compute, output }*. At this time, application components
cannot interact through shared data areas, although the ARC concept could be extended to
support it. In short, Simplex assumes that applications follow a particular architectural style.

It is also assumed that an analytically redundant safety region can be defined for the component
that is to be turned into an ARC. This safety region can either specify constraints purely in terms
of output values, or in terms of the system state as it is affected by the output. Our primary
application area has been continuous control, and we have been able to characterize the
acceptable system state such that it could be encoded as a safety region.

10

2.6.2 Making a Component Analytically Redundant

In this section we focus on introducing analytic redundancy to an existing system by applying the
ARC concept to an existing component. The purpose of turning this component into an ARC is to
allow for dependable evolution of the component to improved versions.

In this scenario the capability of the existing component is considered to be the baseline, i.e., it
becomes the baseline variant. The focus of the design activity is on identifying a safety region to
be monitored. This can be the operating region of the current component. In this case, the current
component also acts as the safety variant. Alternatively, a separate safety variant may be
designed, for which the focus is to provide a larger operating region, but for which the control
objective is limited to recovering the system into a state for the baseline variant to resume
pursuing the component’s control objective.

The safety region of continuous control systems can be determined empirically or through model-
based analysis (Lyapunov and Linear Matrix Inequality (LMI); see Sections 6 and 7). In
empirical determinations, there is uncertainty in the observed data samples. To compensate,
conservative monitoring constraints are derived. In model-based analyses, the control system is
modeled as a linear system, for which Lyapunov functions guarantee convergence, i.¢., stability,
and the LMI technique can derive the largest possible ellipsoid, characterizing a safety region.

2.7 Supporting an Upgrade

In this section we focus on introducing an upgrade to an existing capability, i.e., introducing an
upgraded version of a component with improved performance characteristics. In this case we
assume that the component has already been turned into an ARC (see previous section).

In this scenario, the design activity consists of three steps: the design of the improved component,
the design of performance constraints, and the choice of recovery protocol policy. The improved
component may be a new control algorithm or the result of changes to the control parameters in
an existing algorithm. The design of performance constraints focuses on providing a monitor that
checks whether the upgrade variant achieves the component control objective and whether it does
so within performance expectations for either the baseline component or the upgrade variant.

Finally, the recovery protocol used by the ARC can be tuned to the robustness needs of the
system at any time during the evolution. One policy focuses on validating the performance
constraints. In this case, the modeled performance envelope is compared against the actual
performance of the baseline (or upgrade) variant. A violation is this constraint is recorded, but
leadership is not changed. A second policy focuses on validating the upgrade. In this case the
safety as well as validated performance constraint violations will trigger change in leadership and
the disabling of the upgrade variant. Observed violations are interpreted as being caused by
misbehavior of the upgrade variant. A third policy gives the upgrade variant a second chance
through limited retries in case of violation. This policy is useful when the monitored variant,
either upgrade or baseline, are considered stable. The violation is assumed to be transient, and the
cause of the violation may have been in another component or a support system function, e.g.,
transient fault or occasional excessive time delay in the communication system.

2.8 Introducing New Functionality

In this section we discuss a scenario in which new functionality, such as a new control objective,
will be introduced. It is assumed that this functionality is different from the existing capabilities,
e.g., a new mode may be introduced to an autopilot. In this case we have no existing baseline
capability. There are two options for defining a safety variant and a corresponding safety region.

11

Option one focuses on existing components as a fallback for recovery. The safety region is
characterized by the operating region of this component. The second option involves the design
of a safety variant, for which the focus is recovery to one of the existing component capabilities.
In this case, the safety variant has to be validated, its simple design contributing achieving a
quality implementation.

In some cases, one of the existing capabilities may be used in such a way that it pursues the
intended new control objective (for example, to provide a series of way points in the way point
mode following an intended trajectory). This modified capability could then be viewed as a
baseline version for satisfying the new control objective.

Since new functionality is being introduced, we may want to not only monitor the safety region,
but also monitor performance against the new control objective. This performance monitor may
be a very simple characterization of the control objective that may get refined over time. Initially,
it may detect just divergence from the control objective and later be refined to observe
convergence.

2.9 Periodic Execution Behavior

Many control applications are comprised of several components that process a data stream, i.e.,
sensor data is passed through several processing steps, resulting in output to be passed to
actuators. Periodicity of a controller component that is implemented as an ARC and that
processes a data stream is achieved as illustrated in the example shown in Figure 6. A unit
referred to as Physical 1/0 is implemented as a periodic process. The unit interacts with the
controlled device by reading sensor data and providing actuator data. It provides input to the
controller as periodically emitted messages and it passes the output received from the controller
component to the controlled plant in a periodic manner. By running the highest priority it
guarantees the timeliness of the data stream elements both from the device and to the device
(within the jitter of scheduling this process). The controller is implemented as an aperiodic ARC,
1.e., the aperiodic processes for the variants and MDU are dispatched by message arrival.

2.10 Distributed ARCs

Two scenarios can be considered for distributed ARCs. The first scenario involves placing a
whole ARC on a particular processor. In this case the scheduling issues are those of performing
scheduling analysis of distributed components independent of whether they are ARCs.

The second scenario involves placement of the high assurance elements of an ARC on one
processor and the volatile variants on other processors. Being a fault-tolerant component, the
ARC does not depend on the completion of volatile variants. Thus, any uncertainty in
terprocessor communication time is observed as missing output from the volatile component
and can be treated as a transient fault. This approach has been chosen in the coordinated
pendulum prototype.

2.11 Multi-ARC Systems

Applications may have several components that need to be upgraded dependably, and thus are
turned into ARCs. In this case, we can identify two categories of upgrade: in-place upgrade of
component variants, and changes to the system structure. In-place upgrade of component variants
refers to component implementation changes that do not involve changing the communication
topology to other components or addition and removal of components. In this case, the
communication topology between components is preserved in that different variants of an ARC

12

may use subsets of ports and connections. The ARC implementation discussed so far supports
this in-place replacement.

An application with multiple ARCs has a number of configurations and can change between them
at run time. Each ARC autonomously monitors its leader's behavior and reconfigures itself as
necessary. As a result, potentially all possible combinations of ARC-variant leadership may
occur. Reconfigurations of some ARCs may have side effects on other components and may
introduce configuration inconsistencies. If not identified and corrected at run time, these
consistencies may trigger fault observations in other ARCs, causing further local
reconfiguration. We refer to these configurations as logical configurations (see Figure 7) because
their underlying task configuration may or may not change, i.e., the MDU may just ignore the
output of a variant or actually disable its execution. Section 5 discusses an approach to manage
such configurations.

wAaxr»

Figure 7. Logical Configuration

ARC:s have scheduling characteristics that are like other components, i.e., they are periodic or
aperiodic with specified periods, execution time limits, deadlines, etc. At this time we assume
that all variants of an ARC are executing at the same rate. Notice that different ARCs, however,
may execute at different rates.

Changes to the communication topology or in the set of components can be viewed as different
variants of composite components, i.e., subsystems that consist of a set of communicating
components. Switching between such variants involves switching between process configurations
and communication topologies. This is an area that is still being explored for Simplex, and a
promising solution approach can be found in the Honeywell MetaH real-time architectural
language.

2.12 Multimode Components and ARCs

in many control applications, components have multiple operating modes. These operating modes
may be externally controlled, i.e., mode switching is initiated by another component, or mode
switching may be initiated through some mode logic that is part of the component. The output
and effect of different modes may be observable by other components or may be transparent.
Hybrid controllers are an example of a component that provides transparent mode switching.

The implementation of such a component may be monolithic or may be modularized into the
different modes. In the latter case, it may be desirable to consider support for dependable upgrade
of each of the modes. In this case, each mode is treated like a separate component to which the
ARC concept is applied. If the multimode component has mode logic, the mode logic may evolve
as well.

13

Alternatively, the component as a whole is treated as an ARC, and each of the variants may have
multiple modes. In this case each of the variants may contain mode logic. Consistency must be
established between the mode logic of each variant such that variant switching results in
execution of the expected mode.

14

3. Middleware Services

3.1 The Distributed Publisher/Subscriber Communication Model

Distributed real-time systems are becoming more pervasive in many domains including process control,
discrete manufacturing, defense systems, air traffic control, and on-line monitoring systems in medicine.
The construction of such systems, however, is impeded by the lack of simple yet powerful programming
models and the lack of efficient, scalable, dependable and analyzable interfaces and their
implementations. We argue that these issues need to be resolved with powerful application level toolkits
similar to that provided by ISIS [5]. In this section, we consider the IPC requirements that form a
fundamental block in the construction of distributed real-time systems. We propose the real-time
publisher/subscriber model, a variation of group-based programming and anonymous communication
techniques, as a model for distributed real-time IPC which can address issues of programming ease,
portability, scalability and analyzability. The model has been used successfully in building a software
architecture for building upgradable real-time systems. We provide the programming interface, a detailed
design, and implementation details of this model.

3.2 Background

With the advent of high-performance networks such as Asynchronous Transfer Mode (ATM) and
upward-compatible 100 Mbps network technologies, the cost of network bandwidth continues to drop
steeply. From a hardware perspective, it is also often significantly cheaper to network multiple, relatively
cheap PCs and low-cost workstations to obtain an abundance of processing power. Unfortunately, these
cost benefits have been slower in accruing to distributed real-time systems because of the still formidable
challenges posed by integration issues, frequent lack of real-time support, lack of standardized interfaces,
lack of good programming models, dependencies on specific communication protocols and networks,
portability requirements and lack of trained personnel who perhaps need to be re-educated on the benefits
and potentially major pitfalls of building working distributed real-time systems. We believe that the
difficulty of programming distributed real-time systems with predictable timing behavior is in itself a
significant bottleneck. Unfortunately, the problem is actually much harder because many other issues
need to be addressed concurrently. These issues include the need to maintain portability, efficiency,
scalability and dependability as the systems evolve or just become larger. Put together, these issues pose
daunting challenges to the construction of predictable distributed real-time systems.

Three factors in particular seem to dominate the various phases of the life-cycle of developing and
maintaining distributed real-time systems. First, the development, debugging and testing of distributed
real-time systems is hindered by complexity; there are many degrees of freedom compared to
uniprocessor systems which are conceptually easier to program. It would be extremely desirable to have
a programming model which does not depend upon the underlying hardware architecture, whether it is a
uniprocessor or a network of multiple processors. Second, systems change or evolve over time.
Hardwiring any assumptions into processes, communication protocols and programming models can
prove to be extremely costly as needs change. Finally, as distributed real-time systems grow larger, there
is often a need to introduce new functionality by extending services and functions provided. Such
extensions can become impossible if currently operational code needs to be rewritten to accommodate
these changes, or sometimes even if the entire system just has to be taken down for re-installation of other
systems. In other words, it would be desirable if a subsystem can be added online without having any
downtime for the rest of the system.

15

3.2.1 Objectives for a Distributed Real-Time Systems Framework

Due to the many issues that need to be addressed simultaneously in building distributed real-time

systems, we believe that a well understood framework for building distributed real-time systems is

essential. Specifically, the following objectives should be addressed by a framework for building such
systems:

+ Ease of programming: The framework must provide simple programming models and interfaces to
the programmer. The implementation of this programming model is hidden from the application
programmer and completely bears the responsibility of hiding the complexity of the underlying
hardware (processor and network) architecture, communication protocols and other configuration-
dependent issues. Optimizations that are dictated by application performance requirements should
still be done only at the implementation layer of the model. However, the programming model and
mterface exported to the programmer should be left untouched.

¢ Portability: The programming model should be portable across platforms and environments (at least
at the source-code level). This objective basically implies that the model should not be bound to
specific implementation-dependent features such as the availability of UDP/IP or a specific network
medium.

e Analyzability: Since the system has real-time semantics, analyzability and predictability of the
system's timing behavior cannot be sacrificed. It would be ideal if the programming model(s) and
interface(s) come with schedulability models to facilitate scheduling analyses of applications using
these interfaces.

+ Efficiency: As long advocated by the real-time community, real-time systems are not “fast” systems
but they are “predictable” from a timing point of view. Nevertheless, efficiency or performance is an
important practical consideration in many applications. An elegant programming model whose
implementation is unacceptably inefficient is unlikely to succeed in practice.

e Scalability: The natural appeal of distributed systems is that they can grow larger in order to provide
added power and functionality as system needs grow over time. A programming model for these
systems should be able to scale naturally. Similar to the requirement above for ease of programming,
the responsibility for providing scalable performance and hiding programming complexity must lie in
the implementation of the programming model.

+ Dependability: As the system scales up in size, components or subsystems will need to be changed
because of considerations such as failure, preventive maintenance, and upgrades. Since many real-
time applications demand continuous and/or error-free operations, it is often critical in many cases
that failure or maintenance problems do not cause damage to life and/or property.

¢ Protection and enforcement: Software errors in a new relatively untested module must ideally not
bring the entire system down. Some form of protection and enforcement (such as denying a request
for unauthorized access to a critical resource) can be very desirable.

Some of these requirements often seem to be (and can be) contradictory. For example, hard-wiring some
assumptions may make analyzability easier. Scalability may sometimes conflict with both ease of
programming and efficiency. Similarly, requiring portability or protection may sometimes affect
efficiency adversely because of additional software layers and/or checks needed.

3.3 The Real-Time Publisher/Subscriber Communication Model

An IPC capability is a fundamental requirement of distributed real-time systems. All of the goals for a
distributed real-time systems framework have direct relevance to this communication capability. For
example, it would be very desirable if the IPC model is independent of uniprocessors or distributed
systems, independent of specific communication protocols, independent of the network used, scales
efficiently to a large number of nodes, works despite node or network failures, and fault(s) in some

16

application module(s) which do not bring down the entire communication layer. The IPC layer therefore
constitutes a good test candidate for the proposed framework. In the rest of this paper, we present the
real-time publisher/subscriber communication model for IPC, along with its design and implementation,
which address many of the goals for a distributed framework .

3.3.1 Related Work

The real-time publisher/subscriber communication model we describe is based on the group-based
programming techniques (isis18) and the anonymous communication model [6]. Such a model in a
general non-real-time context is also sometimes referred to as “blindcast” (POSIX21). In the model that
we propose, we are driven not only by the need to maintain ease of programming, but also by the need to
maintain analyzability, scalability and efficiency for real-time purposes.

3.3.2 The Communication Model

The real-time publisher/subscriber model associates logical handles to message types. Messages can be
generated and received based only on these logical handles without any reference to the source or
destination of the messages, and independent of the underlying communication protocols and networks in
use. Once a logical handle has been created, sources (publishers) can send or publish messages with that
handle. Sinks (subscribers) can subscribe to and receive all messages published with that handle. At any
given time, the publishers need not know the subscribers and vice versa. In fact, there may be no
subscribers to a published message, nor any publishers on a logical handle subscribed to. Publishers and
subscribers may also obtain or relinquish publication and subscription rights dynamically. It is also
possible for an application thread to be both a publisher and a subscriber simultaneously. The logical
handle itself can be as simple as a variable-length ASCII string.

In contrast to pure “blindcast” techniques, we also allow the publishers/subscribers to know, if needed,
who the publishers/subscribers are on a certain message type, and the source of any received message.
We allow this because additional publishers and/or subscribers have performance impact from a timing
perspective, and it is impossible for a framework provider to judge all of the needs of application builders.
However, by providing the information that applications may need, the framework can at least allow an
application to make its own decisions. For example, the application could check the number of current
publishers on a message type before allowing a new publication right to be requested. We believe that
this concern of letting the application have access to performance-sensitive information and thereby have
control over application performance is another significant issue that needs to be addressed by a
framework for distributed real-time systems.

3.3.3 The Application Programming Interface

The C++ application programming interface for our real-time publisher/subscriber model is given in
Figure 8. An illustration of how exactly the Application Programming Interface (API) would be used is
presented later in Figures 9 and 10. The notion of a distribution tag is key to our communication model.
it is the logical handle by which all messages can be published and received. As its name implies, the tag
represents how a message will be distributed. In this case, the tag contains information regarding the
publishers and subscribers on that tag (including their node addresses, and communication-protocol-
dependent information such as port numbers, information which is not seen by the user). Hence, the API

" In this paper, we ignore the dependability requirement, but our current design and implementation have been
carried out with this requirement in mind. Ongoing extensions to this design and implementation will allow the
dependability requirement to be addressed as well.

17

provides calls to create and destroy distribution tags. Once a distribution tag has been created, it can be
used to obtain publication and/or subscription rights, to publish messages with that tag, and to receive
messages with that tag. Associated with each distribution tag can also be a set of real-time attributes such
as the priority at which messages with this tag will be transmitted.

class DistTag IPC {
private:

public:

// create or destroy distribution tag
Create_Distribution_Tag(tag_id_t tag, domain_t domain);
Destroy_Distribution_Tag(tag_id_t tag);

// get/release publication rights on distribution tag
Get_Send_Access(tag_id_t tag);
Release_Send_Access(tag_id_t tag);

// get/release subscriber rights to distribution tag
Subscribe(tag_id_t tag);
Unsubscribe(tag_id_t tag);

// publish on specified distribution tag
Send_Message(tag_id_t tag, void *msg, int msglen);

// receive a message on a subscribed tag:

// returns the process id of the sender: specify time

// to wait and the node address of the sender is

// returned in optional "out" parameter.
Receive_Message(tag_id_t tag, void *msg, int *msglen,
timeval_t *tout, in_addr_t *from_addr = NULL);

// purge all input messages queued locally on tag
Purge_Messages(tag_id_t tag);

// is a message available on a specified tag?
int Message_Available(tag_id_ttag);

// query list of publishers/subscribers on a tag to

// allow applications make own decisions.
sender_list_t

Get_Senders_On_Distribution_Tag(tag_id_t tag);
receiver_list_t
Get_Receivers_On_Distribution_Tag(tag_id_t tag);

// Notes: In our implementation, tag_id_t is (char *)

// and tag id's are specified as ascii strings.

// "domain_t" used during tag creation can be

// GLOBAL or LOCAL, but only GLOBAL is supported.

15
Figure 8. The Application Programming Interface for the Real-Time Publisher/Subscriber Paradigm

3.3.4 Fault-Tolerant Clock Synchronization

Consider the problem of distributed clock synchronization [7]. Typically, clock slaves send a message to
a clock master requesting the time, and the clock master responds with the time it has. The slaves use the
master time and knowledge of the transmit time to update their local view of the globally synchronized

18

clock. If the clock master dies, some other node must become clock master and all slaves must now
redirect their time requests to the new master. With the real-time publisher/subscriber communication
model, two (or more) nodes can choose to act as cooperating clock masters. They obtain subscription
rights to a distribution tag with logical name “Clock Master Request,” and all slaves get publication rights
to this tag. Slaves can also register the unique tags on which they expect to see their responses by sending
registration messages to “Clock Master Request.” A primary clock master response to a request from a
slave would be to this tag (unique to that slave). In addition, the clock masters run an internal
handshaking protocol (using a tag like “For Use Only by Masters”) such that at most one publishes
responses to slaves' requests, for example. If one master dies, another master can realize this because of
the absence of heartbeat on the “For Use Only by Masters” tag, for example, and start publishing
responses to the slaves. A slave's behavior does not change: it continues to publish its requests to “Clock
Master Request” and to subscribe to its individual response tag. The slave literally does not care where
the clock master responses come from. However, it must be noted that the masters themselves must take
great care to keep their clocks more tightly synchronized and to respond to outstanding slave requests
when a master fails.

3.3.5 Upgrading a Process

The fault-tolerant clock synchronization model can also be used to upgrade a process which is already
running. All communications to the process's external environment must use distribution tags. When this
process needs to be upgraded, its replacement process is created, and it obtains publication rights and
subscription rights to all of the tags used by the process being replaced. Then, using a predefined
handshaking protocol, the original process stops publishing its messages; simultaneously, the replacement
process starts publishing the same messages and reacting to the messages it receives on its subscribed
tags. As aresult, as far as the rest of the environment is concerned, this process “looks” the same as the
replaced process but can have enhanced functionality. This upgrade paradigm is at the heart of the
Simplex architecture framework for building upgradable and dependable real-time systems [8] and is built
upon our real-time publisher/subscriber communication model as just described.

3.4 The Design and Implementation of the RT Publisher/Subscriber Model

The key behind our design of the real-time publisher/subscriber communication model can be quickly
summarized as follows. The generation and reception of messages happen in the “real-time loop” or the
“steady-state path” and must therefore be as fast as possible. Conversely, the creation and destruction of
tags, and getting publication or subscription rights are viewed as primarily non-real-time activities
happening outside of the real-time loop and can be very slow compared to actual message
communications using tags. We refer to this as the efficient steady-state path requirement.

The overall architecture of the design of our communication model follows the design presented by
Rajkumar, Gagliardi and Sha [9]. Application-level clients (processes) use the communication model by
making calls listed in Figure 8, which are implemented by a library interface hiding the complexity of the
underlying implementation. The IPC daemons on various nodes communicate with one another, keeping
them all apprised of changes in distribution tag status: tag creation, tag deletion, addition/deletion of
publication/subscription rights. (Recall that the current implementation does not yet tolerate node
failures.) A client that creates/deletes tags and gets publish/subscribe rights does so by communicating
with its closest IPC daemon. Needed distribution tag information is then sent back to the client from the
IPC daemon, and is stored in a local tag table in the client's address space. Any changes to this tag
information because of requests on local or remote nodes are notified to the client (by the same daemon
that processed the original tag request) and are processed asynchronously by an update thread created and

19

running in the library. Naturally, the local tag table is a shared resource among this update thread and the
client thread(s) and must be protected without the danger of unbounded priority inversion.

3.4.1 The IPC Daemon

Each IPC daemon actually consists of three threads of control that run at different priorities:

Local Manager: A local manager thread responds to requests for tag creation/deletion and
publication/subscription rights from clients on or in close proximity to this node. Not being part of
the efficient steady-state path, this thread can run at low priority.

Update Manager: The update manager thread communicates with its counterparts in the other IPC
daemons to receive tag updates. Any local manager thread receiving a request which changes the
status of a distribution tag sends the status update notification to the update managers on all of the
other nodes, and then updates the local daemon's copy of the tag table. The remote update manager
threads update their respective copies of the tag table to reflect the change status. In addition, they
may also notify any of their local clients that have a copy of that tag. These asynchronous
notifications are handled by the update thread in the client library. A local manager thread can
respond to its client only when all notifications to the remote update managers are complete. Hence,
the update manager thread runs at a higher priority than the local manager thread.

Delivery Manager: Strictly speaking, the delivery manager is not necessary. When a client needs to
send a message with a valid publication right, the distribution tag will be in its local tag table in its
address space and will contain the current publishers/subscribers to this tag. The client can therefore
directly send a message to each of the subscribers on this list via the library. However, if there are
multiple receivers on a remote node, it is often wasteful to send many duplicate network messages to
a single node. The delivery manager is intended to address this (potential) performance problem. The
client sends just one copy of its message to a delivery manager on the remote node, and the delivery
manager, using locally efficient mechanisms, delivers the message to all receivers on its local node.
In a larger system, only the delivery manager needs to be running on each node, and it acts more as a
performance enhancement technique in that case. Since the delivery mechanism is directly in the
steady-state path, this thread runs at the highest priority of the 3 threads. Actually, to avoid
undesirable remote blocking effects [10], this thread may even run at priorities higher than many
application threads.

3.4.2 The Client-Level Library

In the user-level library on the client side, three services acting as counterparts to the three threads in each
IPC daemon are supported, as follows:

Local request service: This library module in the client space translates client calls for tag status
changes mnto a request that is sent to the local request manager of the closest IPC daemon. It then
blocks until a successful or failed response is obtained. This service is executed as part of the calling
client thread at its priority.

Delivery service: This library module in the client gets activated when the client publishes a
message. Distribution tag information from the local tag table is obtained, and if any receivers are on
remote nodes, messages are sent to the delivery managers running on these remote nodes. At most
one message is sent to any remote node, since the remote delivery manager will perform any needed
duplication to multiple local receivers. This service is also executed as part of the calling client
thread at its priority.

Update service and thread: The update service is performed by a separate, user-transparent thread in
the library. As mentioned earlier, this thread receives and processes notifications of tag status
changes from its host IPC daemon. Any changes that it makes to the client tag table must be atomic.
The atomicity can be provided either by semaphores supported by priority inheritance or by

20

emulating the ceiling priority protocol [10, 11]. This thread should run at higher priority than all
client threads in this process using the IPC services.

3.4.3 Sequence of Steps on Various Calls
In this subsection, we summarize the list of actions taken for different categories of calls in the API of
Figure 8.

When a non-steady-state path request (tag creation/deletion request, publish/subscribe right request) is

issued, the following process is enacted:

1. The client's local request service sends a request to the local manager of the IPC daemon (on the
closest node) and blocks after setting up a timeout.

2. The local request manager checks to see if the tag status change can be made. If so, it sends an update
status to the update manager threads of remote IPC daemons®. Then, it updates its local tag table.

3. The local request manager then sends a response back to the client, which unblocks and checks the
return value for success.

4. [If there is no response from the IPC daemon (typically because it was not started), the client times out
and detects the error status.

When the steady-state path request “publish message on a tag” is issued, the following process occurs:

1. The calling thread atomically checks the local tag information for valid information.

2. If the information is valid, it sends copies of the message to all receivers on the local node (if any)
and at most one message to each remote delivery manager whose node has at least one receiver for
that tag.

When the steady-state path request “receive message on a tag” is issued, the following steps occur:

1. The calling thread atomically checks the local tag information for valid information.

2. Ifwvalid, a specified timeout is set and the client thread blocks waiting for a message. If a message is
already pending, the client returns with the message. The process id of the sender process and its
node address are also available on return.

3. Ifno message is received within the specified time, the client returns with an error.

When a query call “obtain senders/receivers on a tag” is issued, the following process occurs:

1. The client's local tag table is atomically checked, and if the information is available locally, the
information is returned.

2. [If the information is not locally available, the request is forwarded to the nearest IPC daemon for
obtaining the information.

3.4.4 Meeting the Goals of the Design

We discuss how the above design achieves the design goals outlined in the beginning of Section (model).

Ease of programming is achieved by providing location transparency, an identical programming model
for unicast or multicast, and an identical programming model for uniprocessors or distributed systems.
This programming ease is readily apparent in the benchmark code of Section (performance), in which the
code does not change as the system grows from one processor to multiple processors as well as from one
receiver to multiple receivers.

* An acknowledgement-based delivery mechanism is recommended here. However, the current implementation just
uses datagrams.

21

Portability is achieved by maintaining protocol independence and keeping the interface constant. For
example, our real-time communication model was first implemented on a single node using only UDP
sockets. Then, for performance reasons, the underlying communication protocol was ported to POSIX
message queues, but the user interface was unchanged. Finally, the interface remained constant as
support for communication across nodes was added with only the addition of an opfional new parameter
to the Receive_Message() call to identify the source address of a message. Shown in the next section,
POSIX message queues are still used locally on a node, and UDP sockets are used across nodes, but all of
these details are hidden from the programmer at the interface.

Scalability is achieved by ensuring that there will not be significant bottlenecks when the size of the
system grows. The implementation is supported by interacting IPC daemons running on various nodes,
but as the number of nodes grows in the system, the communication between the daemons can become
expensive. Hence, the current implementation is designed such that one daemon need not be running on
every node. The daemons can be running only on an acceptable subset of the nodes in the system. Only
the delivery manager needs to be replicated on every node.

Analyzability is achieved by assigning appropriate scheduling priorities to various threads and by
providing a schedulability model of how the IPC interface operates. This is the key component from a
timing predictability point of view. There are many threads of execution in client space and in daemon
space, and it is critical that these threads run at appropriate priorities. The distribution tag information is
also stored as data shared among these threads in each process, and unbounded priority inversion must be
avoided on access to this data. More discussion on this topic is provided in Section 3.4.6.

Efficiency is achieved by ensuring that the steady-state path or the real-time path is as efficient as
possible. Any message sending, reception or purging uses only information available locally within the
client space. Remote deliveries involve network communication, and hence delivery to multiple receivers
on the same node are accelerated by a delivery manager which does the local duplication.

Protection and enforcement is obtained by making sure that no process but the IPC daemons on various
nodes actually can change the global publisher/subscriber information. Clients can at worst corrupt only
the locally stored information, but this information is not accessible beyond the client's address space.
Unfortunately, a misbehaving client can still try to flood the network or a remote delivery manager, and
protection against such behavior can be provided at only a lower layer at the OS network interface.

3.4.5 Implementation Aspects

The current implementation of the above design uses the following:

e POSIX threads are used both in the IPC daemon and the client, which are scheduled using fixed
priorities.

¢ POSIX semaphores are used for protecting the tag table shared information in the IPC daemon.

e POSIX message queues are used for local delivery of messages within a node, including direct
delivery by a client to other local receivers and indirect delivery to local receivers by a delivery
manager that receives messages from a remote client.

o Al client-generated requests to the IPC daemon and their corresponding responses use UDP sockets
such that an IPC daemon need not be present on every node.

¢ All communications which cross node boundaries also currently use UDP sockets.

22

+ FEach message that is sent from a client is prefixed with header information that includes the process
id of the sender and its node address. This information can be used by higher level handshaking
protocols at the receiver(s).

Current system initialization requires that IPC daemons be started on all of the networked nodes before
any application-level IPC using the real-time publisher/subscriber model can commence. The list of
nodes in the system is read from a file (identical copies of which have been installed on all the nodes) so
that each IPC daemon and library knows what other daemons to contact for tag updates and message
delivery.

3.4.6 Schedulability Analysis

From a schedulability analysis point of view for real-time systems, the implementation of the RT
publisher/subscriber model has many implications, almost all of which are relatively well understood.
The implementation presumes a fixed-priority-driven preemptive scheduling environment, but the model
is only a library interface that is not bound to any particular application. Various real-time applications
can use this model in desired ways. However, for these applications to be able to analyze the impact of
the real-time publisher/subscriber model they use, sufficient information regarding the model's internal
architecture, its cost, and priority inversion characteristics need to be known. The model's internal
architectural design and implementation have been discussed in detail in the preceding sections. For
example, the threads which provide various services or execute various modules are part of the design
discussion, as are their priority assignments.

The techniques of generalized rate monotonic scheduling [12, 13] can be applied for uniprocessor
analysis. The notions of remote blocking, deferred execution penalty, and global critical sections (if a
remote client/server application architecture is used) as defined by Rajkumar [10] can be used for
distributed system analysis. These techniques basically need two pieces of information; the amount of
execution time for segments of code, and the worst case duration of priority inversion. Priority inversion
can result due to the atomic nature of local tag table accesses in each client and in the IPC daemon.
However, note that these shared resources are shared only within the confines of each client and the IPC
daemon process. Hence, it is relatively easy to identify the maximum duration of critical section
accesses, and the cost is bounded by measurements described in the next section.

The relatively tricky aspect of the schedulability analysis is that a tag status update can generate
asynchronous notifications to many client threads, and hence the true value of preemption time from
higher priority tasks and blocking time for a task must be based on the knowledge of the maximum
number of clients (senders and receivers) on tags used by lower or higher priority tasks. However, results
from real-time synchronization help determine these values. At any given priority level, at most one

lower priority task from that node can issue a tag request (causing asynchronous notifications to be sent to
other tasks) since this priority level can preempt subsequent lower priority requests and tasks. However,
requests from higher priority tasks must be accounted for appropriately.

3.4.7 Object Hierarchy

The real-time publisher/subscriber IPC model has been implemented in C++ (the current implementation
has about 7000 lines of code) and is based on an extensive and flexible object hierarchy. Basic classes
encapsulate many needed OS functions such as timers, semaphores and threads to enable easy porting to
other operating environments. Other library classes implement queues, hash-tables, protected buffers, and
communication protocols such as sockets and POSIX message queues. Above these is built the tables to
hold the tag information and messaging classes for constructing and decoding messages sent among the

23

IPC managers, and between the client and an IPC daemon. At the top level are the classes for
stantiating the update manager, the delivery manager and the local manager on the daemon side, as well
as the update thread, the local request service and the delivery service on the client side. The actual
managers and services are provided by simple instantiations of these classes. Each of these classes can be
ported to other platforms with different operating systems and/or communication protocols without
affecting the other layered classes.

The key parameters used to control real-time performance in this context are scheduling priorities and
access to shared resources. Hence, all classes which relate to schedulable entities (i.e. threads) and access
to shared resources (e.g. semaphores) are parameterized such that priorities and semaphore accesses are
under the control of instantiating entities.

3.5 Performance of the Publisher/Subscriber Model

The real-time publisher/subscriber communication model described in the preceding sections has been
implemented and preliminary benchmarks obtained on a network of i486DX-66MHz PCs running on a
POSIX-compliant real-time operating system LynOS Version 2.2 with 32MB of memory. The network
used was a dedicated 10Mbps Ethernet but was very lightly loaded.

3.5.1 The Rationale Behind the Benchmarking

As discussed in Section 3.4.6, we attempted to measure the cost of each call that a client can make with
the real-time publisher/subscriber model. We also tried to validate how far we met one of the design goals
of efficiency compared to the traditional “build-from-scratch” communication facilities, despite the
unoptimized nature of our prototype implementation and the optimized nature of the undertying UDP/IP
and POSIX message queue communication primitives. In all measured cases, we published messages on a
tag and measured the time it takes to get its response on another tag. This allows us to measure the
elapsed time from a single point of reference, namely the sending end. For the sake of convenience, this is
referred to as “sender-based IPC benchmarking.” By sending multiple messages, sufficient elapsed time
can be accumulated to eliminate any clock granularity problems.

“Sender-based IPC benchmarking” is conceptually simple in the case of either local or remote unicast: (a)
send a message, (b) wait for a response, (¢) repeat this several times, (d) measure the total time elapsed,
(e) and compute the time elapsed per round-trip message. In the case of remote unicast, sender-based
benchmarking also avoids the need for a tightly synchronized clock across nodes. With multicast in
general and remote multicast in particular, the situation is trickier. If all multicast recipients respond with
a unicast to the sender, the elapsed time contains a large mix of multicast and unicast messages. We
measured this to use as a data point as well. However, if only one recipient responds with an ack message,
then the total cost is dominated by the multicast and it is easy to identify the cost benefits of multicast.
However, it is possible that the ack message returns concurrently before the multicast send has completed
and the elapsed time measurements is distorted. We resolve this by multicasting a message to many
receivers but only the lowest priority receiver responds with an ack. This ensures that the multicast send
completes before the ack originates.

3.5.2 The Benchmark Code

The performance benchmark code on the sender and receiver sides for benchmarking is illustrative of the
ease, power, and compactness of using the real-time publisher/subscriber communication model. All
benchmarks (local and remote unicast as well local and remote multicast) are carried out with this code.
The sender side is presented in Figure 9 and the receiver side is presented in Figure 10.

24

t benchmark_dist_tag_ipc(char *msg, int msglen,
int num_messages, int num_acks)
{

DistTag_IPC ipc; timeval_t start, end;
mti, j;

// get send rights to receivers' tag
// (tag is currently an ascii string)
ipc.Get_Send_Access(RECEIVER_TAG);

// get receive rights for getting acks back
ipc.Subscribe(ACK_TAG);

/I get time-of-day before sending messages
getCurrentTime(&start);

// send out messages

for (1= 0; 1 <num_messages; i++) {
// send message and wait for a response
ipc.Send_Message(RECEIVER_TAG, msg, msglen);

for (j = 0; j <num_acks; j++) {
// block on required acks
ipc.Receive_Message(ACK_TAG, msg, msglen, NULL));
}
}

// get time-of-day we stopped
getCurrentTime(&end);

// compute delay per message sent
// and print it out

Figure 9. Benchmarking Code on the “Sender” Side

25

run_receiver_in_loop(char *msg, int msglen, int ack)
DistTag IPC ipc;

// create tags: no problem if already created
ipc.Create_Distribution_Tag(RECEIVER_TAG);
ipc.Create_Distribution_Tag(ACK_TAG);

// get receive rights on RECEIVER_TAG
ipc.Get_Send_Access(ACK_TAG);

// get send rights on ACK_TAG
ipc.Subscribe(RECEIVER_TAG);

while (True) {
// block for messages waiting forever
ipc.Receive_Message(RECEIVER_TAG,msg,msglen, NULL);

if (ack) {
// send ack to "ack tag"
ipc.Send_Message(ACK_TAG, msg, msglen);
}
}
}

Figure. 10. Benchmarking Code on the Subscriber (Receiver) Side

3.5.3 Performance of Vanilla UDP/IP and POSIX Message Queues
it must be noted that the context-switching overhead from one process to another process is about 100
microseconds.

Table 1 shows the control case that does nof use the real-time publisher/subscriber model. There is one
sender and one receiver. The sender sends a message and the receiver returns a response using UDP/IP or
POSIX message queues. Both sender and receiver are on the same node in columns 2 and 3 but are on
different nodes in column 4. As can be seen, UDP protocol processing is costly relative to POSIX
message queues but the latter work only within a node. This is the reason why we ported the local
message delivery mechanism from UDP to POSIX message queues (without interface changes as
intended).

3.5.4 Publication/Subscription on a Single Node

Table 2 presents the costs involved in multicast to multiple receivers on the same host node (when all
receivers ack back to the sender) for a 256-byte message. A sender with lower priority than all the
receivers (columns 2 and 3) performs better than having the sender with higher priority than all the
receivers (columns 4 and 5) because the sender never blocks in the former case. Also, emulating the
ceiling priority protocol (columns 2 and 5) to avoid the cost of semaphores to access the local tag table
atomically (columms 3 and 4) helps to improve performance.

26

Table 1. Basic System IPC Costs

M Round-trip delay Round-trip delay Round-trip delay
essage . from different
Size on same node using on same node rom differen

POSIX message using UDP nodes using UDP
(bytes)
queues (ms) messages (ms) messages (ms)
32 0.3191 1.488 2.200
64 0.3368 1.481 2.400
128 0.3552 1.556 2.762
256 0.4050 1.633 3.569
512 0.4899 1.657 5.190
1024 0.6654 1.856 8.355
2048 0.8808 2.604 13.200
4096 1.4306 3.501 21.980
8192 2.6490 6.013 39.700

Table 2. Round-Trip IPC Costs for Multicast on a Single Node

Low Priority Low Priority High Priority High Priority
of Sender; no Sender; Sender; Sender; no
Receivers Semaphores Semaphores Semaphores Semaphores
(ms) (ms) (ms) (ms)
1 0.763 0.847 0.832 0.739
2 1.534 1.71 1.774 1.467
3 2.563 2.679 2.907 2.207
4 3.648 3.882 4.045 3.199
5 4.945 5.239 5.581 4.445
6 - - 7.167 5.802

Comparing the control case (Table 1, column 2) with the case for 1 receiver, we see that our IPC model
has roughly added at least 340 us to a direct POSIX message queue send (0.4050 vs 0.739 ms for 256
byte messages) for a single receiver and this scales almost linearly as the number of receivers grows. We
attribute this cost to the additional copying done by our implementation.

In the rest of this section, we use semaphores for critical section access so that the numbers are slightly
higher than the performance obtained with emulating the ceiling priority protocol. Table 3 presents the
multicast cost on a single node when only the lowest priority receiver acks. It is surprising to see that a
sender with higher priority than the receivers performs better than a sender with lower priority than the
receivers, the exact opposite of before! This is because of the tradeoff between increasing the number of
context switches and letting one process block waiting for a message that has not yet arrived.

27

Table 3. Round-Trip IPC Cost for Multicast on a Single Node

#of Low Priority High Priority
Receivers Sender (ms) Sender (ms)

1 0.83 0.829

2 1.37 1.173

3 1.847 1.522

4 2.259 1.831

5 2.762 2.254

6 3.178 2.597

7 3.553 2.877

8 4.096 3.181

3.5.5 Subscription from a Remote Node

Table 4 gives the costs incurred when multicast is performed to a remote node with 256-byte messages.
Compare Table 1 column 4, 256-byte message cost (3.569 ms) with Column 3, 1 receiver cost of Table 4
(6.72ms). The added overhead of our library front-end and its sending a message to a delivery manager,
which in turn delivers to local receivers has added an overhead of mare than 3 ms. However, with only
two receivers on the remote node, two plain UDP messages sent across the network would have cost
(3.569*2 = 7.138 ms) while the delivery manager is able to deliver two copies locally to accomplish the
same function at 7.18 ms, i.e., the performance crossover occurs only with 2 receivers on a remote node.

Additional receivers on the remote node cost only 0.5ms each (with a single ack), while direct duplicate
communication would not only load the network but also cost an additional 3.569 ms. Even out
unoptimized prototype is better than a straightforward implementation which sends network messages to
each remote receiver, while at the same time providing a much simpler and more powerful interface that
deals with both unicast and multicast simultaneously, whether local or remote. This is a significant
observation with respect to our goals of ease of programming, scalability and even efficiency, despite the
unoptimized state of the current implementation. Note that this enhancement is obtained by using UDP
sockets across the network (the most efficient at that level) and POSIX message queues locally on the
receiving side (the most efficient within a node as seen in Table 1).

Table 4. Round-Trip IPC Costs for Multicast to Multiple Receivers on One Remote Node

. Only Low
4of All Receivers Priority
X Acknowledge .
Receivers Receiver acks
(ms) (ms)
1 6.68 6.72
2 8.58 7.18
3 10.57 7.54
4 12.88 7.98
5 15.28 8.55
6 17.86 9.15
7 18.32 9.43
8 21.52 -

28

Table 5. Round-Trip IPC Costs for Multicast to Multiple Recipients on Many Remote Nodes

(.)f # of Receivers | # of Receiver Round—mp Delay
Receivers per Published
on Host on Host
on Host “hardy” “chaplin Message on
“laurel” Y P “shemp” (ms)
1 0 0 6.74
1 1 0 8.55
1 1 1 12.5
2 1 1 12.68
2 2 1 15.28
2 2 2 17.79
3 2 2 20.17
3 3 2 22.78

3.5.6 Subscription from Multiple Remote Nodes

Table 5 presents the costs involved for 256-byte messages when there can be up to 3 receivers on each of
3 remote nodes, “laurel,” “hardy,” and “chaplin.” Messages are itiated from the node “shemp.” 4//
receivers must ack to the sender. As can be seen, if there is one receiver on each of the 3 remote nodes,
the round-trip cost is around 12.5 ms. Also, the costs do not scale linearly because of some pipelining
concurrency that happens naturally across nodes. This is clearly seen in rows 3 and 4 where there are 1 or
2 receivers on a remote host “laurel,” but the total difference in cost is almost negligible. This is because
the responses from the receivers on “laurel” happen in parallel with the messages sent to receivers on
hosts “hardy” and “chaplin.”

3.5.7 Lessons Learned

We have gained some valuable experience and insights into the communication model with our prototype
implementation. As mentioned earlier, this communication model has been successfully used in
implementing inter-processor communication in the Simplex architecture [8]. Due to the expense of UDP
sockets in local node communications, as per Table 1, we re-implemented the interface using POSIX
message queues. Since the interface could be reimplemented without any changes, it demonstrated that
the goals of interface portability and performance optimization are not mutually exclusive.

The performance of the current implementation needs to be further optimized, however. We pay a
performance penalty because of additional message copying necessitated by the need to insert and then
delete message headers for use by the communication model. Currently, tag information is also stored in a
hash-table and the hashing cost is relatively high. We therefore plan to eliminate strings for tags from
being hashed once a tag has been created. However, despite these current inefficiencies, it is encouraging
from Section 3.5.5 to see that the current implementation can actually do better for multicast to remote
nodes and the improvement actually grows larger as the number of receivers increases.

Another alternative to consider is the use of shared memory segments to store the tag table information
for sharing among clients and the IPC-daemon on a node. While this does not affect the steady state path
significantly, it can make the implementation much simpler. However, two disadvantages would arise.
First, with a single piece of shared memory having all the information, protection and failure issues need

29

to be addressed. Secondaly as the system grows, IPC daemons must run on all nodes to update the shared
memory information.

3.6 Concluding Remarks

The construction of distributed real-time systems poses many challenges because of the concurrent need
to satisfy many attributes, including ease of programming, portability, scalability, analyzability,
efficiency, and protection. We have sought to identify how many of these attributes can be dealt with in
the context of IPC, a fundamental component of any distributed system. We have identified the real-time
publisher/subscriber model as an excellent candidate in this domain. We also presented a programming
mterface, which is quite simple and based on the notion of a distribution tag. The interface has been
tested with the Simplex architecture and has remained stable with needed optimizations done without
affecting the interface. We also provided a detailed design of the model, an implementation, and
benchmarks to show that many attributes can indeed be satisfied.

Despite these positive results, much work remains to be done. The current prototype does not tolerate
processor failures even though the current design and code is structured such that these changes can be
ncorporated relatively easily. In addition, redundant networks need to be supported to tolerate network
failure. Finally, support for flexible, yet real-time, transfer of state between new and existing [PC
daemons in different states is critical.

30

4. Verifying INSERT Switching Rules

4.1 Introduction

CheckMate is a Matlab toolbox used to perform verification of hybrid systems, systems with both
continuous and discrete dynamics. This section describes the application of the CheckMate toolbox to the
autolanding routine of the F-16 aircraft as implemented through the Simplex architecture. Both
CheckMate and the Simplex architecture were developed at Carnegie Mellon University as part of the
INSERT project.

In CheckMate, hybrid automata are used to model the behavior of a hybrid system [14, 15]. CheckMate
uses quotient transition systems (QTS) to provide a discrete approximation of the hybrid automata [16],
and then performs formal verification on the discrete approximation. System models are entered into
CheckMate using the Matlab Simulink/Stateflow GUI, thus allowing the user to take advantage of the
simulation capabilities available with the Simulink toolbox. Parameters and specifications are entered
through both the GUI and the Matlab command window. The verification is carried out from the Matlab
command prompt. There are several options available during verification such as saving data after each
iteration, closing the Simulink window once the hybrid automaton is constructed, and a simulation-based
validation routine useful for getting a quick first pass look at the system verification.

The Simplex architecture uses ARUs as a mechanism for fault-tolerant real-time software upgrades in
control systems. Specifically, three controllers are present in a Simplex ARU: the baseline, safety and
upgrade controllers. As the name suggests, the upgrade controller is a new or improved version of the
control software. The baseline controller is a known reliable controller, usually the current or legacy
version of the software to be upgraded. The safety controller is designed to control the system in a large
operational region and to guide the system back into the operational range of the baseline controller. The
system works as follows. The upgrade controller is given control as long as the system stays within the
operational region of the safety controller. If it appears that the system is about to leave the operating
region of the safety controller, the safety controller takes over and safely steers the system back to the
operational region of the baseline controller. Once back within the operational region of the baseline
controller, the baseline controller takes over and maintains control until the upgrade controller is
reactivated. This architecture can be modeled as a hybrid system with discrete dynamics describing the
Simplex switching logic and the continuous dynamics being the controlled system under each controller.

The Simplex architecture has been applied to the autolanding routine for the F-16 aircraft. The
autolanding system works by directing a radio beam upward from the end of the runway at the ideal angle
of descent and along the center of the runway. This beam then provides both horizontal and vertical
guidance to the aircraft's autopilot system during the landing procedure. The autolanding system senses
deviations from this predetermined glideslope and uses the pitch and roll input commands to make the
appropriate corrections and bring the aircraft back in line with the glideslope. As the aircraft descends, it
must remain within certain safety constraints about the glideslope. There are constraints on the vertical
and horizontal deviations from the glideslope as well as on the aircraft dynamics such as the roll, pitch,
and yaw angles and rates. As a safety measure before landing, there is a point designated as the decision
height. If the aircraft is not within the constraints at the decision height, the landing must be aborted.

Through linearization and order reduction, the model of the F-16 dynamics can be decomposed into

decoupled models of the longitudinal dynamics and the lateral dynamics, respectively. This project
focused on the longitudinal dynamics. Specifically, the goal of this project was to verify that if the

31

Simplex system switched to the baseline controller at a certain height and within a certain set of
constraints, the aircraft would reach decision height without violating the safety limits. Thus, this project
contributes to the INSERT project a formal verification of a portion of the F-16 autolanding routine. In
doing so, a general procedure for verification of hybrid systems using CheckMate was developed.

The report is structured as follows. Section 4.2 provides an overview of CheckMate. Section 4.3 details
the F-16 autolanding system. Section 4.4 follows with a discussion of modeling the F-16 problem in
CheckMate. Section 4.5 presents the verification procedure and results, and Section 4.6 concludes the
report with a review of the project and its results.

4.2 CheckMate

4.2.1 Model Checking for Hybrid Systems

Systems are modeled in CheckMate using polyhedral invariant hybrid automata (PIHA). The PIHA are a
restricted class of hybrid automata (HA)--a generalization of finite state automata [14, 15]. States in the
finite automaton are called locations in the HA, and each location has associated with it a set of
continuous dynamics and an invariant. The continuous dynamics are described by a set of flow equations
in the continuous state space, and the invariant describes a region in which the continuous state must
remain in order for the HA to remain in that location. Locations in the HA are connected via edges. Each
edge describes a transition between locations and is labeled with guard and reset conditions. The
transition becomes enabled when the continuous state satisfies the guard conditions. Similarly, when the
transition is taken, the continuous state before and after the transition must satisfy the reset conditions.
This structure is shown in Figure 11.

Analysis of hybrid automata can be a very difficult problem in general. For this reason CheckMate

models systems with a restricted subclass of HA known as the polyhedral invariant hybrid automaton. A

PIHA, as illustrated in Figure 12, is a hybrid automaton that conforms to the following restrictions:

¢ Each guard condition is a linear inequality (a hyperplane guard).

¢ FEach reset condition is an identity.

¢ The continuous dynamics for each location are governed by an ordinary differential equation (ODE).

¢ For the hybrid automaton to remain in any location, all guard conditions must be false. This
restriction implies that the invariant condition for any location is the convex polyhedron defined by
the conjunction of the complements of the guards. This gives rise to the name polyhedral-invariant
hybrid automaton

identity
reset
- L
e x+ =x »
LT T T
& ¢ x=d, 6.6 X=d ¢ xzd 7
+ ¢ x=d
X =x \
hyperplane T
T guard o x=d;
eic xzd, o
. invariant is the convex polytope
+ . Odeary. defined from complements of the
X=X, differential
. . guards
equation

Figure 11. Hybrid Automaton

32

*»
location guard e, x¢ G(e4) o

(discrete state) edge cildiﬁon X e R(e4,x)
.
-
e, xelle,) * ¢ xeGle)

x" e R(e,,x)

e X 0 reset condition
] invartant: hybrid automaton may
el xe G(€3) remain in & as long as x € (i)
+
- x €R(e,x
initial (¥) :
condition . continuous dynamics

Figure 12: Polyhedral Invariant Hybrid Automaton

The QTSs are finite approximations to hybrid automata [16]. In a QTS, the state space of the hybrid
system is partitioned, and each state in the QTS corresponds to a region of the partitioned state space.
Transitions are defined between states in the QTS under the following conditions (see Figure 13). A
transition is defined from a partition P/ to another partition P2 if and only if there is a state p2 in P2 that
is reachable from a state p/ in P/. CheckMate approximates a QTS by examining the original system at
the switching instants. Thus, an approximate quotient transition system (AQTS) is formed using the
switching surfaces to partition the state space and reachability analysis from the set of initial continuous
states to determine connectivity [17].

The reachability analysis is performed using a method known as flowpipe approximations [18]. Flowpipe
approximations provide polygonal approximations to the continuous flow of the system from a given set
of states under the continuous dynamics associated with that location. These approximations are then
used to define transitions in the AQTS. This results in the QTS on which CheckMate performs formal
model checking using fixed-point iteration methods [24].

The AQTSs are conservative in that if a trajectory exists in the original system, there is a corresponding
trajectory in the AQTS. Therefore, if we can prove that all trajectories in the AQTS satisfy some

(b)

Figure 13. (a) State Space of Original
System; (b) State Space Partitioned for
QTS

33

property, we can affirm that all trajectories in the original hybrid system satisfy the same property. This
allows CheckMate to verify a class of specifications known as universal specifications, which are
represented using the ACTL logic.

ACTL is a subset of the logic known as computation tree logic (CTL) [19]. In CTL the state transition
graph is unfolded into an infinite computation tree. The root of the computation tree is a designated
initial state. The CTL specifications are then used to describe properties of the system along branches of
the tree. Temporal path operators such as X (“the next time”), F (“sometime in the future™), and G (“it is
globally true”) are used to describe properties along a single path through the tree. Branching operators,
E (“there exists a path”) and A (“along all paths”), are added to temporal specifications to arrive at a
system specification in the CTL logic. In CheckMate, these concepts are applied to the AQTS. However,
for the specification to hold true for the original hybrid system, we can describe only the universal
properties of the AQTS-derived computation tree. That is to say, due to the conservative nature of the
AQTS, we can ask only, “Do all paths in the AQTS have a certain property?” The CTL operator for “all
paths” is A. Therefore, this extension of CTL is named ACTL.

Table 6. SCSB Parameters

Parameter Description

. . Number of continuous state variables in the
Number of Continuous Variables . .
continuous dynamics

Number of Discrete Inputs Number of elements in the discrete input vector

Initial Continuous States Initial values of continuous state variables

Name of the m-file function which takes as
arguments the value of the SCSB input » and
Switching Function m-File the continuous state vector x, and returns the
system type and the continuous state
derivatives

.\ . Region in the continuous state space where the
Initial Continuous Set . . .
AQTS reachability analysis begins

B i f the stat i hich th
Analysis Region ounded region o e state space in whic e

verification takes place

4.2.2 Entering System Models in Checkmate

Hybrid systems are entered into CheckMate through the Matlab Simulink/Stateflow GUI. CheckMate
models are built using two customized (masked) Simulink blocks, along with several of the standard
Simulink blocks.

One of the custom blocks in CheckMate is the switched continuous system block (SCSB). The SCSB
represents a continuous dynamic system with the equation X = f, (x), where u is a discrete-valued input

vector, and the output of the SCSB is the continuous state vector x. The parameters associated with the
SCSB are described in Table 6. Currently, three types of dynamics are supported in the SCSB: clock
dynamics (X = ¢, where ¢ is a constant vector), linear dynamics (X = Ax+b, where 4 is a constant
matrix and b is a constant vector), and nonlinear dynamics (X = f(x)).

The other custom block used by CheckMate is the polyhedral threshold block (PTHB). Each PTHB
represents a polyhedral region, Cx <d , in the continuous state space. The output of the PTHB is a

34

binary value indicating whether or not the continuous input vector x is inside the polyhedral region, i.e.
whether or not the continuous state vector x satisfies the condition Cx < d .

Discrete dynamics are modeled in CheckMate using finite state machine blocks (FSMBs). An FSMB is a

regular Matlab Stateflow block with the following restrictions:

¢ No hierarchy is allowed in the Stateflow diagram.

¢ Data inputs must be Boolean functions of PTHB and FSMB outputs only.

¢ Event inputs must be Boolean functions of PTHB outputs only, i.e. events can be generated only by
the continuous trajectory leaving or entering the polyhedral regions.

¢ Only one data output is allowed.
Every state in the Stateflow diagram is required to have an entry action that sets the data output to a
unique value for that state.

¢ No action other than the entry action is allowed in the Stateflow diagram.

Other Simulink blocks supported by CheckMate include multiplexers for vectorizing signals and logic
blocks (AND, OR, NOT, etc.) for creating logical combinations of PTHB and FSMB outputs.
Additionally scopes, x-y plots, and other sink blocks can be used when running simulations. Figure 14
shows a typical CheckMate block diagram.

Several parameters are used throughout the verification process. These parameters as well as any
variables used in the Simulink/Stateflow front-end model are defined and stored in the Matlab workspace.
Parameters and variables can be defined manually or through the use of Matlab m-files. CheckMate uses

g
»
Mus2 Switched - o
Conti System 1
ntinuous System g I
!
Ll
Muse Polyhadral
Thrasheld 1
i 2
* th2
Switched -
Continuous System 2 P Crue=d f—
Polyhadral)
Thrashaold 2 OR
|
Logical
Qiparator
3 tha p Ldd
™ P Cru<=d
Mux1| Mux
Switched Polyhedral
Continuous System 2 Thrashold 2
¥y

Finite
State Machine 1

b
ol
)

Finite
State Machine 2

Figure 14. A CheckMate Block Diagram.

35

a set of global variables throughout the verification process. These variables must be declared in the base
workspace before the verification is started. This can be accomplished in CheckMate using the

global_var m-file script. The following three global variables must be defined before verification is
possible. The GLOBAL_SYSTEM must be assigned the name of the Simulink model to be examined.

The ACTL specification for verification must be contained as a string in GLOBAL_SPEC, and
GLOBAL_APARAM must contain the name of an m-file function that takes as input the discrete state
vector and returns a structure named approx_param. This approx param structure contains several
tolerance parameters that CheckMate uses to resolve numerical precision issues. CheckMate uses some

of these parameters to partition the switching surfaces and initial continuous set (ICS), and others to
eliminate extraneous faces in polyhedra.

4.2.3 Running the Verification

One of the tools available in CheckMate is the validation tool. The validate command simulates the
model from the initial conditions specified in the initial continuous states parameter of the SCSB, uses
that trajectory to build a QTS approximation, and performs verification on this approximation. Ifthe -
vertices flagis added to the validate command, the validation routine is performed on the vertices
of the region given as the ICS in the SCSB parameters. This tool provides the user with an opportunity to
get a quick first pass look at the overall verification process. Many times, a problem that would not be as
obvious in the full verification routine can be spotted quickly with the validation tool.

The verification tool in CheckMate is invoked using the verify command. Several options are
available with the verify command. The -~close option tells CheckMate to close the Simulink model
once the PIHA has been constructed. This is useful for verifications of larger models in which system
resources become a concern. Also useful when system resources are a concern is the ~discard flag. In
each iteration, CheckMate determines which states are unreachable from the ICS. Nonetheless,
CheckMate retains information about all of the states in the system. The —discard flag causes
CheckMate to throw away all information about the unreachable states in each iteration. Two options
useful for verifications requiring several iterations are —save <filenames> and -nopause. The
optional flag -save <filename> saves the Matlab workspace at the end of each iteration in a file
named < filenames<iteration number>.mat. This option is very useful for off-line data
analysis. At the end of each iteration, if the verification does not return a positive result, CheckMate
pauses and prompts the user with the choice to refine the approximation and continue with another
iteration, or quit the program. The -nopause option causes CheckMate to skip this pause and
automatically begin the next iteration, hence the name nopause. The actual verification process in
CheckMate is broken down into several steps. The last two options allow the user to work with these
steps individually. The -step <step> option instructs CheckMate to perform the <step> step of the
process. CheckMate looks for the appropriate information in the Matlab workspace, and performs the
specified step. Similarly, if the user has stopped the process after or in the middle of an iteration, the
continue flag tells CheckMate to look at the workspace information and continue the verification from
the last completed step in the process.

During the verification process (i.e., after issuing the verify command), CheckMate provides the user
with feedback indicating the current step and the level of progress within that step. As each iteration is
completed, the user will be told either that the system satisfies the ACTL specification, or that the
verification returned a negative result. If a negative result is returned, the user can choose to begin
another iteration or quit the program.

36

4.3 The F-16 Problem
4.3.1 F-16 Dynamics

The dynamic model of the F-16 used in our example was adapted from the eleventh order linearized
model presented in [20]. This model takes into account the dynamics of the inner loop control between
the command inputs (pitch and roll rates) and the flight control surfaces on the aircraft (i.e. rudder,
aileron, and elevator). These inner loop dynamics are fast relative to the outer loop controllers.
Therefore, when examining the first order effects of switching in the outer control loop, it is reasonable to
use a reduced order model that does not involve these fast inner loop dynamics. With this in mind, order
reduction was performed on the eleventh order model from [20] resulting in an eighth order model with
the state variables and inputs described in Table 7. As a consequence of this order reduction, it was also
possible to decouple the model into the longitudinal and lateral dynamics of the aircraft. Figure 15 shows
how the variables are separated into lateral and longitudinal dynamics. Equation 1 gives the state
equations governing each situation ((a) longitudinal sate equations (b) lateral state equations). This
project focused on the longitudinal dynamics of the F-16.

6 0 1 ol e 0
g |=[-00183 -042 0| g |+]27.7254 |0 (1a)
dv 4.5379 0 Ofav 0
¢ 0 0 1 0.1698 07 ¢ 0
v 0 0 0 1.0143 Of v 0
pl=[-01149 —0.0508 -1.5297 —-04294 0f p |+|31.5814 |P (1b)
i 0.0094 —0.0071 0.0821 —0.2788 Of r 1.4954
dh 0 4.5379 0 0 0l dn 0

During the autolanding procedure, the aircraft is guided along a predefined glideslope. Deviations from
the glideslope are measured in both the horizontal (/) and vertical (dv) directions. These deviations are
then used to calculate the appropriate pitch and roll rate commands to bring the aircraft back on line with
the glideslope. Since the command inputs are functions of the state variables, the control function can be
embedded into the model. A simple PD controller was developed for use with our reduced order model.
The development of this controller, and the resulting affine system model are described in the next
section.

Table 7: State Variables and Inputs

Variable |Description Input [Description

roll angle Q |pitch rate command

pitch angle P |roll rate command

roll rate

pitch rate

¢
0
W yaw angle
V4
q
r

yaw rate

dv |vertical deviation from glideslope

dh |horizontal deviation from glideslope

37

(a) (b)

Figure 15. (a) Longitudinal and (b) Lateral F-16 Dynamics

4.3.2 Application of Simplex to the F-16

The Simplex architecture uses ARUs to provide fault-tolerant software upgrades in control systems [21].
Simplex switches among an upgrade, safety, and baseline controller based on the performance of the
system. In the F-16 application, we are interested in the behavior of the system after control has been
switched to the baseline controller. For this reason, it is only necessary to develop a single controller for
the dynamic model. In addition to developing a controller for our model, it is also necessary to define
constraints for that controller, as well as safety constraints for the aircraft in general. Once these details
are in place, we will have all of the elements necessary to create our CheckMate model.

A simple PD controller was developed for use as a baseline controller in our example. The variable to be

controlled is dv, so from the open loop state equations (see equation 2), we see that dv =4.53796 .
Selecting gains of kp =0.0472¢—3 and kd = 0.4384e— 3, we arrive at the closed-loop system.

] 0 1.0 0
=-0.0735 -0.42 -0.0013 @)
dv 4.5379 0 0

The safety constraints are derived from the operational region of the safety controller. We are not
concerned with the performance of the safety controller, however, but with whether the baseline
controller lands the aircraft without switching to the safety controller. With this in mind, the safety
constraints were chosen so as to be reasonably close to constraints resulting from an actual safety
controller. Specifically, the constraints on 8 and ¢ were based on physical limitations of the aircraft and

Table 8. (a) Safety and (b) Baseline Constraints

height 22.7 113 340 680 height | 22.7 113 340 680

|dV max 5.0 10 50 200 dvmax] | 5.0 1.0 10 50

0 min,0 max -29.64,10.36 10 max| 0.05 0.1 1.0 2.0

|G max] 5.0 [gmax| | 0.01 0.05 0.5 1.0
(@))

38

pilot, and the dv limits were derived from reasoning about vertical deviations from which it would be
possible to safely recover. As given in Table 8(a), the constraints on 6 and ¢ are constant, and the dv
limits are piecewise linear functions of height given by the data points in the table. The baseline
constraints for our model were chosen to assure a quick return to the glideslope under baseline control.
The baseline constraints for all three variables are piecewise linear functions of height, as defined by the
data points give in Table 8(b).

it is easy to see that there are many properties to be investigated with a system using the Simplex
architecture. For example, does the safety controller drive the system back to the baseline operating
region? Are the safety limits set such that the safety controller can gain control before the system fails?
What constraints are sufficient to allow the system to switch back to the baseline controller and terminate
safely? In this project we examined this final question. Specifically, we investigated the following
question: if the system switches to the baseline controller within the baseline constraints at 1500 feet, will
it land safely?

4.4 CheckMate Model of the F-16 Problem

The Checkmate model of the F-16 autopilot problem is shown in Figure 16. In the sections that follow
we describe the details of this model.

T
g R g I g

duwlim12

aircraft

|
)

dulim23

ghan

decizion_height £

@ %

decizsion_logic

Figure 16. CheckMate Model of the F-16 Autolanding Problem

4.4.1 Switched Continuous System

A CheckMate SCSB is used to model the continuous dynamics of the system. The number of continuous
variables, and the number of discrete inputs are four and one, respectively. There are three continuous
variables associated with the dynamic model of the F-16 aircraft, and a fourth continuous state variable is
mtroduced to track height. The single discrete input indicates the state of the FSMB, which is used to
model the discrete dynamics of the system, discussed in detail below. The initial continuous state is used

39

only for simulation and can be set arbitrarily as needed for simulation analysis. This parameter can also
be left blank if no simulations are going to be run.

The switching function m-file is named F16_long_sw.m. The body of the F16_long sw.m.
function consists of a simple switch statement.

function [sys,type]l = fl6_long sw _bu(x,u)

o

state variables
theta : pitch angle (deg)
Q : pitch rate (deg/s)
dv : vertical deviation (ft)
h : altitude (ft)

d0 ¢ o

o

type = 'linear';
switch u
case 1,
% normal control
Aopen = [
0 1.0000 0
-0.0183 ~-0.4200 0
4.5379 0 0
1;
Bopen = [0 27.7254 0]"';

kp = 0.0472e-3;

kd = 0.4384e-3;

A = Aopen - Bopen*[4.5379*kd 0 kpl;
A = [A zeros(3,1); zeros(l,4)];

o

true velocity = 260 ft/sec and glide slope angle is 2.5

deg
b = [0 00 -260*sin(2.5*pi/180)]1";
otherwise,
A zeros (4,4) ;

b zeros (4,1) ;

The discrete input is evaluated, and if it takes on the value of one, indicating normal safe operation, the A
and b matrices under the baseline controller are returned. Otherwise, the system has either violated a
safety constraint or reached the decision height, and the A and b matrices are returned as zero matrices,
indicating that the FSMB has reached a terminal state (commit to the landing or abort). In either case, the
system type is returned as linear.

The analysis region (AR) and ICS parameters take the name of workspace variables representing a
linearcon object and a cell array of linearcon objects, respectively. A linearcon object is a CheckMate
data structure used to represent polyhedra. In the case of the F-16 model, the ICS is represented by the
variable F16_ICS, in a similar manner; the AR is represented by F16_AR. The actual AR is defined in
the range of height from 1600' to 0’ by the safety constraints on 8 and ¢ as well as arbitrary extrema of dv
guaranteed to be outside the height-dependent v safety constraints at all times. This guarantees that any
state outside of the AR is an unsafe state. Specifically, the AR is characterized by the following

inequalities: —29.64 <0 <10.36, —5<¢ <5, -600<dv<600,and 0 </ <1600.

40

We wish to verify that if the F-16 switches to the baseline controller at 1500 feet, it will reach decision
height without violating any safety constraints. Given this goal, the ICS is defined as the entire region at
1500 feet in the state space in which the baseline controller could be switched into operation. Using the
limits discussed in the previous section, we arrive at: —4.41<0 <441, —-2.21<0<2.21,

—146.47 < dv<146.47,and h=1500.

4.4.2 Polyhedral Threshold Blocks

Three PTHBs are used to define the safety constraints in the CheckMate model. One is used to define the
decision height, and the other two are used in a logical combination to define the height-dependent dv
safety constraints. All PTHBs take as a parameter the name of a linearcon variable in the workspace.

400

300 +

dvlim12
dvlim23

dv (ft)
o
{

=200

-400 L
25 125 235 325 425 525 625 725

height (1)

Figure 17. PTHB Regions (in the dv versus Height Space)

Figure 17 illustrates the regions defined by the PTHBs. The decision_height PTHB defines the region

h =125 . This means that a falling edge event from the decision_height PTHB to the FSMB indicates
that the system has reached the decision height. The other two PTHBs are named dvlim12 and dvlim23.
They are used to define the safety constraints in the two segments of the glideslope discussed in Section

3. The constraints in the first segment (113 < 4 <340) are represented by dvlim12, and dvlim23
represents the constraints in the second segment (/2 = 340). Using the limits discussed in Section 4.3, the
dvlim12 constraints are defined as —0.184+10<dv<0.1842—10, and dvlim23 represents the
constraints —0.444+100 < dv <0.44h—100 . Due to the relationship of these lines and the
segmentation of the glideslope, in order for the system to reach an unsafe state it must leave both dvliim
regions. We represent this relationship with a simple OR block from the standard Simulink library. The
output of this OR block is in turn fed as an event input to the FSMB, which uses a falling edge event from
that input to indicate that the continuous system has violated a safety constraint.

41

safe_normal
entry: g=1;

decision_height

unsafe
entry: = 3;

commit
entry: = 2;

Figure 18: F-16 Finite state machine - decision_logic

4.4.3 Finite State Machine Block

One FSMB is used to model the discrete dynamics of the F-16 autolanding system. The FSMB, shown in
Figure 18, consists of three states: normal, commit, and unsafe; three event inputs: start, decision_height,
and violation; and one data output, g. As the name suggests, normal is the state used to represent proper
operation within the safety constraints and above the decision height. The start event is used to initialize
the FSMB to the normal state. If at any point during normal operation the FSMB receives a violation
event (a falling edge from the OR of dvlim12 and dvlim23), indicating that the system has violated the
safety constraints, a transition is made to the unsafe state indicating an aborted landing. Similarly, if the
system remains in the normal state until it reaches decision height (indicated by a falling edge from the
decision_height PTHB), the FSMB transitions to the commit state indicating the decision to commit to a
completed landing.

4.4.4 Specifications

The final portion of modeling the F-16 problem in CheckMate is generating the specification to be
verified. For our example, we want to verify that if the aircraft intercepts the glideslope within the
baseline constraints at 1500 feet, the aircraft will reach decision height without violating the safety
constraints. Using the CheckMate model described above, this property can be expressed with the
following ACTL specification: (AF (decision_logic == commit)) & (AG ~out_of_bound). In English,
this specification reads, “along all paths some time in the future, decision_logic == commit is true, and
along all paths, it is globally true that out_of_bound is false.” For our model, this means that the aircraft
reaches decision height without entering the unsafe state (there is no way to get to commit from unsafe)
and that the aircraft never leaves the AR. This last part of the specification is necessary for two reasons.
First, in our example, the AR is constructed such that anything outside of the AR is a violation of the
safety constraints, and secondly, all of the methods used in CheckMate are valid only in a bounded region
of the state space. Therefore, if the system leaves the analysis region, the CheckMate approximations and
verification are no longer valid. The following section describes how this specification was verified using
CheckMate.

4.5 Verification Procedure and Results

These sections describe how the general procedure of parameter selection and entry, validation,
validation-based refinement, and full verification is applied to the F-16 problem to achieve a positive
verification result. In this case it is necessary to use a technique known as funneling [22] to achieve a full

42

verification result. A discussion of this technique and the positive verification results conclude this
section.

Table 9. Fields of the approx_param Structure

Field Name Value for F-16 Problem Description

Used to determine if vector field is
dir_tol - pointing in the same direction on all parts
of the partition

Used to determine if variations in the
var_tol 2 vector field are within a certain range of
the normal vector to that face

size_tol 2 Sets the maximum size of any partition
W diag ([1/50, 1720, 1/1600, 1/1600]) Weighting matrix to scale and square the
axes of the state space
T 2 Length (in time) of the flowpipe segments
. Time step for simulation between
Tsim 2

switching surfaces

Maximum number of steps in “back and
max_bisection 6 forth” routine to approximate exact
crossing of a switching surface

Resolution used to approximate exact

quantization_resolution 0.05 crossing of a switching sutface
. Maximum amount of time examined in the
max_time Inf o .
reachability analysis
reachability_depth Inf Maximum number of switching instances

examined in the reachability analysis

4.5.1 Parameter Selection and Entry

The first step in the verification procedure is to choose appropriate tolerances in the approx param
structure. This structure contains several tolerances used in partitioning the state space, performing the
reachability analysis, and removing unnecessary or redundant polyhedra faces. The fields in this structure
and the values assigned to the fields for the F-16 verification problem are shown in Table 9. The first
field, dir tol, is used to assure that the vector field is pointing in the same direction on all parts of the
partition, and is not necessary in the linear case. The weighting matrix W was set to a diagonal matrix
with the values 1/50, 1/20, 1/1600, and 1/1600 on the major diagonal. This guarantees that all values will
fall in the range of -1 to 1. With this in mind, size_ tol and var tol were both set to 2. This allows
for the maximum size of a partition to include the whole range of values in any one direction, and
similarly allows the vector field to vary across the same range of values.

The last seven parameters of Table 9 (mid-angle through edge_med_length) are used in eliminating

redundant faces from polyhedra. Due to numerical issues in the flowpipe approximation method, it is
possible to get approximations with faces that are nearly parallel, but maintained as separate faces.

43

CheckMate uses seven parameters involving angle limits and edge length factors to eliminate small
redundant faces. For example, in Figure 19, F2 would be eliminated. Parameters F1 and F3 would be
extended to form a new polyhedron with one less face. This aids in reducing the computational
complexity of the next step in the reachability analysis. For the F-16 example, these seven parameters
were left at their default values given in Table 9.

Fl F3
F2

Figure 19. Polyhedral Face Elimination

The six parameters in light gray are used in the reachability analysis during the construction of the AQTS.
The T field determines the length (in time) of the flowpipe segments. In the F-16 example, this was set
to 2 seconds. This was based on some simulation analysis. The fastest modes of the system have time
constants on the order of 10 seconds, so a time step of 2 seconds allows for a reasonable approximation of
the system. Similar reasoning holds for Tsim, the time step used for simulation between switching
surfaces, so it was also set to 2 seconds. Default values were used for max_bissection and
quantization resolution. These parameters are used once the simulation finds that the flow
crosses a switching surface. At that point, CheckMate uses a "back and forth" routine governed by
max_bissectionand quantization resolution to approximate the exact crossing of the
switching surface. There is a clear termination criterion in the F-16 example (the plane reaches decision
height), so max_time and reachability depth were set to infinity.

function setup ()

a0

SETUP.M Sets up workspace variables and verification parameters for
F-16 auto landing verification.

a0

a0

Keith Richeson
4-Nov-99

a0

% declare global variables in base work space
evalin('base', 'global var'};

% declare global variables locally
global_var

9

% setup block diagram parameters

ICS CE = [0 0 0 1];
ICS_dE = 1500;
ICS CI = [-1 00 0;1 00 0;0-100;0100;00-10;0010I;
ICS dI = [4.411765;4.411765;2.205882;2.205882;146.470588;146.470588];
AR C = [1 00 0;-1 00 0;

0100;0 -10 0;

00 -10;0 01 0;

000 -1;0 00 17;
AR d = [10.36;29.64;5;5;600;600;0;1600];
dvliml2 C = [0 0 1 -0.176350658661949;0 0 -1 -0.176350658661949] ;
dvlimi2_d = [-10;-101;

44

dvlim23_C [0 0 1 -0.440876646654872;0 0 -1 -0.440876646654872];

dvlim23_d [-100;-1001;
decision_height C = [0 0 0 -1];
decision_height d = [-125];
assignin('base', 'F16_ICS', {linearcon(ICS_CE, ICS_dE, ICS_CI, ICS 4I)});
assignin{('base', 'Fl16_AR', linearcon([], []l, AR_C, AR d));
assignin('base', 'dvliml2', linearcon([], [], dvliml2_C, dvliml2_d));
assignin{'base', 'dvlim23', linearcon([], [], dvlim23_C, dvlim23_d));
assignin{'base', 'decision height',

linearcon{[], [], decision height C, decision height d));

9

% Set up verification parameters

GLOBAL_SYSTEM = 'landing5!';
GLOBAL_APARAM = 'F16_long_param';
GLOBAL_SPEC = ['{(AF (decision logic == commit)) & (AG ~out_of bound)'];

The approx_param structure is returned from a MATLAB m-file function. The name of this file, as
well as the ACTL specification and the name of the Simulink system used to model the system are
assigned to GLOBAL CheckMate variables. In the case of the F-16 example, this was accomplished
through a MATLAB m-file function named setup.m, listed in Fig. 11. In addition to setting up these
GLOBAL variables, setup.m was also used to assign values to variables used in the Simulink model.

4.5.2 Funneling Approach to Avoid Numerical Problems

Before the full verification routine was run, the F-16 example was subjected to the simulation-based
validation routine. This routine was run for the eight vertices of the ICS defined by the baseline
constraints at an altitude of 1500 feet. Validation results showed that all eight vertices returned a positive
verification result. However, by using x-y plot blocks during the validation, it was noticed that two of the
four dimensions (6 and ¢) converge to zero in a relatively short amount of time. This result indicated a
potential problem in the flowpipe approximation. In a situation such as the F-16 example, as the flow
collapses, it becomes a challenge to distinguish points that are close together from points that are the
same. This causes problems in the flowpipe approximation routine as it becomes unclear which points
are distinct and which are coincident. This problem manifests in the form of warnings from the Matlab
optimization routines during the reachability analysis, or by causing indexing errors when array elements
are left empty or undefined by a failed optimization routine. With this in mind, the full verification was
attempted, and this convergence problem was quickly confirmed.

Funneling is a technique being used in designing hybrid control systems [22]. The basic concept as
applied to control synthesis is to use multiple controllers each with an individual goal state to drive the
system to an overall goal. This can be accomplished if each individual controller's goal (the small end of
the funnel) lies within a region in which another controller can drive the system to its individual goal (the
large end of another funnel). In this situation, the system switches between controllers, each driving the
system to its own goal until the overall system goal is reached. A similar methodology can be applied to
the verification problem. That is, if we can verify that all trajectories from one set of states eventually
reach another specific region in the state space, and in turn we can verify that all trajectories from that
region return a positive verification result, then the overall verification holds. This can easily be
expanded to include several steps (i.e., one region leads to a second, the second leads to a third, and so on
until the last region returns a positive result).

45

The funneling technique is applied to the F-16 example in the following manner. During the verification
routine, if it is discovered that the flow is converging to a point that is likely to cause numerical problems,
the routine is stopped and the flow is “blown up” to a larger region. The verification is continued starting
from this new larger region, and this procedure is repeated several times throughout the verification. This
results in a chain of reasoning similar to the funneling approach. The procedure is illustrated in Figure
20. The ICS flows to the inflated region, which in turn leads to a positive verification result, thus
providing a positive overall verification result.

Intermediate

inflated region

Region for

positive verification

Figure 20. Illustration of funneling

This method was manually applied to the F-16 example using CheckMate. The following heuristics were
used as a starting point. The glideslope was divided into several segments defined by the altitude of the
aircraft. The limits on each segment were decided using the validation routine and the simulation
capabilities of CheckMate. Five segments were defined: 1500-1000 feet, 1000-500 feet, 500-340 feet,
340 feet-250 feet, and 250 feet-125 feet. These segments are illustrated in Figure 21. At the end of each
segment, the flow from that segment was inflated to the baseline limits at that height for 6 and ¢, and the
dv limits were extracted from the flow approximation and left unchanged. This process led to a
successful verification in the first segment of the glideslope, but a failure was discovered for the second
segment. Given this result, the heuristics were modified, and less conservative initial sets were chosen for
each segment. With this modification, the process was repeated and a successful verification was
obtained. The verification results are discussed in the next section.

4.5.3 Positive Verification Result
For each segment of the glideslope, a positive verification was returned after a single iteration. This
indicates that the system came through each section without violating the safety constraints. Further,

Table 10. Results of Funneling Verification Procedure

Segment | Time to verify (min) | Volume of initial set | Volume of final set

1500-1000 1.92 1.1403x10* 1.0359x10™
1000-500 3.83 5.12x10"" 4.6517x107°
500-340 2.03 7.2x10°® 1.9247x107
340-250 4.57 6.0x10° 2.1439x10°®
250-125 4.44 1.92x10™ 1.8757x10°®

46

since the initial set for each segment was developed from the approximation of the flow from the previous
segment, it is trivial to prove that the flow from each segment ends up within the initial set for the next
segment. Finally, since the mitial set of the first segment is the ICS for the overall verification and the
lower limit of the final segment is the decision height, it is reasonable to conclude that the system
proceeds from the ICS (the baseline limits at 1500 feet) to the decision height without violating any of the
safety constraints. That being the case, this is a positive verification of the specification defined in
Section 4.4.4.

s00

600

400

200

Q \‘_"_.
k=1 e
= o == B =
_/"—/—
-z00 —
400 —
500 |-
-800 /
i} 125 250 7S 500 B25 750 §75 1000 1125 1250 1375 1500

height (R

Figure 21. Height Segments for Full Verification

The results of the funneling verification procedure are shown in Table 10 and Figure 22. Table 10 shows
the time required to verify each segment and the volume of the initial (“blown up”) and final (converging)
sets. Figure 22 illustrates the results in the dv versus height plane. Figure 22(a) shows the ICS on the
left, and its rapid convergence toward zero. In Figure 22(b), the verification is stopped at 1000 feet, and
the converging flow (the wide line) is enlarged slightly. The verification restarted, and this procedure is
repeated at 500 feet, 340 feet, and 250 feet. In the final step (Figure 22(c)), we see that the inflated region
at 250 feet, reaches the decision height (125 feet) before the flow converges significantly. If the
procedure had not been successful at some stage, less conservative initial sets could be used to see if that
would lead to a positive verification result. In general, since verification of hybrid systems is only
semidecidable, continued failure of the verification would not be conclusive, i.e., one could not
necessarily conclude that the system is unsafe. It would, however, indicate that the system should
probably be redesigned to make it verifiable.

4.6 Conclusion

Several tools have been developed for verification of hybrid systems [23-28]. This project used one of
those tools to verify a complex hybrid dynamic system. The CheckMate tool uses hybrid automata to
approximate the behavior of the real system and then uses model checking routines to perform
verification on these conservative approximations. This tool was applied to the verification of the F-16
autolanding routine as implemented through the Simplex architecture. A funneling approach was used to
avoid numerical convergence problems in the approximation routines. It was also verified that the aircraft

47

reaches decision height safely if the baseline controller takes control within the baseline constraints at
1500 feet.

400 20 - 15
! /
300 | II 151 /
/I i+
/ }
200 | 7/ 10
7
/ Y4 0.5
100 |- 7 5t /
4 1
€ 4 € oL € oL
3 3 3
\
100 \ 5L \
\ 0.5
\ \
200 \ 10 - \
\ \ 1L
300 | v\ sl 1
\ \
\
400 L L L L L L ' .20 L L L L L L ' 1.5 L L L L L L '
1550 1500 1450 1400 1350 1300 1250 1200 1050 1000 950 900 850 800 750 700 275 260 225 200 175 150 125 100
height (ft) height (ft) height (ft)
(a) (b) ©

Figure 22: Verification Results in the dv vs. Height Plane for Selected Glideslope Segments

There are several directions for future work. This project dealt with a system that converges significantly
and quickly from a large initial set. The funneling procedure, when applied to accomplish the
verification, is an exercise in dynamic scaling. The tools are available in CheckMate to automate this
process. The automation resulting from the use of such tools would be a great improvement when dealing
with systems such as the F-16 example. Another direction for future investigation is numerical precision
and sensitivity. This project showed that increasing the flow approximation by a relatively small amount
caused a large difference in the outcome of the approximation routines. Further, there are a great number
of parameters used throughout the verification routine. A numerical analysis of these parameters and
their effect on the verification routines and numerical sensitivity would certainly be appropriate. The
final issue to be discussed here is the computational complexity of the routines. Everything in
CheckMate is represented using polyhedra. This means that any operation performed in CheckMate must
be extensible to higher dimensions. It is currently the situation that the routines will work in higher
dimensions, but it is also the case that for dimension greater than three, the computational complexity
causes lengthy verification runs and presents challenges to system resources such as memory and
processor loading. Improvement in any of the areas discussed here would certainly serve to improve the
CheckMate tool and contribute to the hybrid systems community.

48

5. ARC-Based Application Validation

5.1 Introduction

This chapter discusses tool support and an approach for identifying application inconsistencies at design
time. These inconsistencies may be introduced during an upgrade to the application and may manifest
themselves as residual errors. While INSERT offers technology to tolerate such errors, the focus of this
technology is to identify inconsistencies before an application is deployed. These inconsistencies may be
due to a change introduced to the application or an ARC-based component reconfiguring itself, i.e.,
switching variants at run time. In the former case it is desirable to understand the impact of a change and
to propagate the change such that hidden side effects are minimized. In the latter case it is desirable to
determine at design time whether certain combinations of component variants result in inconsistent
configurations, in which they should be avoided if possible. Notice that, even if not handled proactively,
the effects of this inconsistency may still be observed by the ARC mechanism of other components,
resulting in further reconfiguration. Proactive treatment of such configuration inconsistencies, however,
results in better system performance.

We proceed as follows. In section 5.1 we examine characteristics of example avionics and other control
system software that are possible culprits in causing residual errors as part of an upgrade. In section 5.2
we examine how these characteristics can be captured in a model, and analysis can identify potential
mconsistencies. In section 5.3 we discuss how this consistency analysis is used to identify potentially
mconsistent logical configurations of applications that consist of multiple ARC-based components and
how these configuration constraints can be enforced at run time. Section 5.4 elaborates on how the same
model of the system can be used to determine the impact of a change to an application, i.e., how the
model aids in identifying all components that are potentially affected and ensuring that the change is
propagated consistently. Section 5.5 describes the prototype analysis tool implementation

5.2 Issues in Avionics System Upgrades

This section focuses on characterizing avionics systems. The purpose is to identify key characteristics of
avionics system components that other components make assumptions about. Those assumptions are
often not documented in the code, which is the primary artifact available for maintenance. At the same
time these assumptions are reflected in parameters and constants embedded in the code. Once identified,
key characteristics can be reflected in a model and made available for system-level dependency analysis
during maintenance. As a result of such an analysis the maintenance engineer can then revisit detailed
models, such as a predictive control model or models used for timeline analysis, as appropriate.

5.2.1 General Observations

Legacy systems, i.e., many systems currently in operation, can be described as federated single-processor
systems that make up a distributed control application. Application scheduling for each component is
performed locally by cyclic executives. The application functionality is tightly coupled with and contains
extensive knowledge of the physical architecture and capacities of the execution platform. Limited
throughput of the platform results in limitations of some components that are hard-coded into other
components. For example, the number of targets being tracked is limited. Prediction algorithms are based
on low-order estimation techniques. Control loops exist between these distributed components. Time
constants that are hard-coded in the components are based on processor and communication speed.
System control equations are time sensitive, i.e., changes in temporal system characteristics affect control
parameters, which are embedded in the application code as control constants.

49

Avionics systems are evolving to make use of ever increasing processing speeds and capacity of
commercial hardware. They are migrating to tightly coupled multiprocessor architectures with real-time
operating systems supporting more flexible task execution through preemptive scheduling techniques.
Multiple avionics system components are sharing computing resources. Changes in processor speed,
communication services, and scheduling models impact many parameters of an avionics implementation.
In many cases such dependencies between temporal characteristics in terms of task execution and in terms
of the application semantics are based on assumptions that are not explicitly recorded. As a result, side
effects of changes to one such time-sensitive parameter are not detected until integration testing. At the
same time, additional computing power allows functionality to be increased, whether in the form of more
precision in predictive algorithms, an increase in the number of targets to be tracked, or new services such
as handling of new tactical situations or mission planning. In other words, there is increasing demand for
incremental upgrade and continuous evolution of avionics systems.

We will examine two scenarios of avionics system upgrades to further identify component characteristics
that are key to identifying assumptions and dependencies that previously were hidden, i.e., not considered
in maintenance and upgrade activities. Then we will examine the implications of using INSERT, a
technology in support of incremental upgrade.

5.2.2 Visual Bombing Sights

The system depicted in Figure 23 represents the generic problem of visual bombsights in existing tactical
aircraft. In this system, ranging sensors and weapon impact prediction algorithms are used to generate
real-time aiming cues on avionics displays for an operator (pilot). The operator steers the aircraft until the
aiming cues align with the target, whereupon weapons are released. This system is therefore categorized

Inertial
Navigation
/ System Weapon
,' Impact
Predictor
Ranging
Y| sensor
- Display
© g
- 4
R Flight &
~< Weapon [d=—'*—] Operator
Tracked Controls
Object

Figure 23. Visual Bomb Sight

as a distributed, closed loop control system. Some of the components in the system have internal control
loops as well (i.e., flight controls and ranging sensors).

Weapon delivery solution computation involves processing information from various sources, such as the
following:

s aircraft position and velocity

e aircraft mean sea level attitude

¢ slant range to weapon impact point

e aircraft attitude

50

e weapon ballistic characteristics (weight, coefficient of drag, etc.)
e atmospheric data (pressure, temperature, air density, winds, etc.)
¢ other factors such as weapon ejection velocity and orientation

To construct a correctly performing design solution for the visual bombsight problem, much information,

such as the following, must be known about the quality of the input data used:

¢ latency of sensor information describing aircraft kinematics and relationship to earth

e characterization of sources of error for all input data (often modeled and important in prediction
computations).

Discussion of the computational steps involved in the solution can be divided into the following two

categories:

1. Compensation for latencies in input data (temporal alignment): Tag the measurement with the time
of measurement. Use rate information (aircraft velocities, attitude rates, etc.) to compensate
(extrapolate) for the time from measurement. The longer the extrapolation period, the more error is
mtroduced. Errors in the ability to tag the measurement with the time and the ability to resolve the
current latency in the measurement time can also be a major error contributor. These timing and
resulting extrapolation errors generally manifest themselves as additional noise (uncertainty) in the
parameters being estimated. Note that sometimes rate information is not available and often must be
estimated or possibly ignored. This creates additional errors.

2. Minimization of error in geometric predictions: Predictions are handled similarly to measurements in
the past, except that the future events are generally less certain than future events (given good time
tagging mechanisms). Predictability of timing becomes even more important with future events.
Additional errors occur in the uncertainty of rate information. At best, current rates are known, and
future rates that affect the parameter being estimated in the future are generally not known and must
be estimated (or the effects ignored). These all point to minimizing the absolute time between
prediction and usage in addition to minimizing the uncertainty.

The design objective of this control system can be expressed in terms of symbology positioning errors.
Timeline analysis in terms of absolute latency, variability, and predictability from measurement to display
or weapon release and rate of symbol positioning update drive the stability of the symbology (jitter, drift,
etc.).

This example shows that the resulting model for calculating the predictions is quite elaborate. Such
models are often developed and validated through extensive modeling and simulation. Our goal is to
identify key characteristics of components and may be reflected in the output data stream of the
component. Other component designs may be based on assumptions about those characteristics, which
results in hidden dependencies.

Some of the characteristics of a component, i.e., the input it processes, are expressed in terms of
assumptions about data type, measurement unit, coordinate system, and legal values of elements in the
data stream. Data stream characteristics may include rate, guaranteed availability of elements, and first
order constraints on data values in the stream. The data may have error characteristics in terms of
accuracy from sensing, prediction, and from time-related variability. An upgrade scenario of the visual
bombsight system illustrates the intricacies of time-related properties.

The visual bombsight system was originally implemented on a federated hardware configuration with

cyclic executives. The introduction of the Modular Mission Computer (MMC) resulted in a port to a new
hardware platform with faster processors and preemptive scheduling, a port to Ada, as well as

51

enhancements to the functionality. Timing-related hidden dependencies manifested themselves in erratic
behavior (oscillation) of the displayed symbology.

Root cause analysis focuses on providing an understanding of the effects of changing the scheduler and
the deadline on the jitter. As pointed out by domain experts, there is a close interplay between the timing
characteristics in terms of scheduled tasks (processes), and the temporal and accuracy characteristics of
the processed data in terms of application semantics.

Changes in the application can have unforeseen impact on component characteristics. A change in the
task timing characteristics (an explicit change in deadline, or an implicit change in jitter as a result of
changing the process scheduling model from cyclic to preemptive or from periodic processing to
message-driven aperiodic processing) can affect the characteristics of the data stream being processed.
Therefore, it is beneficial for maintainers to be aware of such dependencies.

In summary, we can have time-sensitive component characteristics that are affected by timing properties
of the implementation in terms of real-time processes.

5.2.3 INS Upgrade

This section summarizes a scenario of avionics system upgrade that involved navigation fusion and
“standard” Inertial Navigation System (INS) replacement. This section could be called “the myth of
Form, Fit, Function, Interface (FFFI) compatibility when upgrading sensors.”

The original F-16 used an INS developed by Singer-Kearfott. It was desired to position symbology on
the Head Up Display (HUD) using the attitude information provided by this INS. There is latency from
the time of attitude measurement to the time of display on the HUD. Proper positioning would require the
prediction of the attitude of the aircraft at the time the symbology is displayed on the HUD. The attitude
measured by the INS, therefore, needed to be extrapolated using attitude rates to the time of display.
Attitude rates must be estimated based on attitude outputs from the INS. This was accomplished and the
system worked. Later, a new INS was added to the F-16. The INS was billed as “form, fit, and
functionally”” and was compatible with the previous system. When it was installed, the symbology
position was extremely noisy. After much investigation, it was determined that the new system filtered
its output attitude, whereas the earlier system did not. This had the effect of providing smoother attitude,
but it destroyed the assumptions made by the attitude prediction algorithm. The algorithm had embedded
knowledge about the behavior of the INS system. This knowledge can be expressed as an assumed
characteristic of the input data stream: in terms of processing unfiltered, raw INS sensor data; or in terms
of delay of the sampled data due to filtering.

5.2.4 Multiple Modes and INSERT

Avionics components and other control system components often support multiple operating modes.
Different modes exhibit externally observable differences in behavior. Selection of modes may be
externally controlled by operator or another component. Modes may be usable under certain conditions.
Some components may depend on other components operating in certain modes. Mode condition and
mode transition tables are a common way to model such system behavior.

The INSERT package supports dependable upgrade of avionics components. It does so by supporting the

presence of multiple component variants and by a fault tolerance mechanism that monitors an upgrade
variant and at run time reverts to a well established baseline variant.

52

In an INSERT-based application, different variants of an ARC may show different characteristics that are
externally visible. Introduction of an upgrade variant may impact other components and require changes
to them. Other components may want to take advantage of the enhancements in the upgrade variant,
resulting in new variants of their own. The result is a set of dependencies on particular component
variants similar to those between modes of different components.

When INSERT is applied to systems with multiple multimode components, the number of potential
combinations of component modes and variants increases quickly, and tool support is essential for
examining acceptable combinations. A multimode component may evolve as a whole in multiple variants,
1.e., the whole component is upgraded even though only one mode may have changed. Modes within a
multimode component may also evolve independently, i.e., for each mode, new variants are introduced
separately. The first approach lends itself to designs with highly interdependent modes, while the second
approach better supports components with independent modes.

5.3 Identifcation of Inconsistency through System Models

Recently architecture description languages (ADL) have emerged from the research community [29].
These notations allow you to model a system in terms of a collection of interconnected components, in
which the components may themselves be composites of other components. The notations provide
facilities for specifying additional constraints of various forms, typically in terms of the types of data and
event communicated and in terms of behavior (e.g., Wright [30] and Rapide [31]). Systems modeled in
ADLs can be analyzed and simulated. MetaH [32] is an ADL that is tailored to support embedded real-
time applications, i.e., it allows modeling of applications in terms of periodic and aperiodic processes.
System models expressed in MetaH can be analyzed for Generalized Rate Monotonic Analysis (GRMA)
[33] schedulability. The system model is also the basis for automatically generating an executive and
performing a system build. As result, the MetaH toolset can make certain guarantees about the
consistency between the system model and the actual implementation. These guarantees include
consistency in the data types communicated between components, and satisfaction of timing
requirements. Together with address space protection between processes, these guarantees provide a high
degree of fault avoidance and tolerance.

We are building on the capabilities of a notation such as MetaH and expanding its expressive power to
capture application characteristics common in avionics applications that reflect application semantics,
including continuous processing of data streams. We proceed by first summarizing the capability of
describing the component interconnection structure of applications, and then elaborating on the port
interface specification to model data stream properties, followed by predicate-based constraints on the
flow of data, and closing with constraints on component properties.

5.3.1 Modeling Component Interconnection Structures

The capability to model component interconnection structures is modeled after MetaH. A component

consists of a component interface specification and a component implementation description. The

interface specification describes how the component interfaces with other components—expressed in

terms of ports and shared objects. An implementation description indicates what source code files make

up the implementation, and how a component is composed of other components (component instances).

We have several component types, as follows:

® Process: a schedulable unit of execution (task)

e Macro: a collection of interconnected processes, 1.e., a composite component

e Mode: a collection of interconnected processes; only one of multiple modes can be active at a time,
1.e., modes represent process (task) configurations

53

e Subprogram: a subunit of a process

In addition to these software component types, we have hardware component types such as processor.

Processes can be periodic or aperiodic. Periodic processes execute at a specified period, with a given
deadline, maximum execution time, and possibly an offset start time. They will operate on input that is
available at the time of dispatch. Execution of aperiodic processes is triggered by an external event.
Processes have input and output ports, i.e., interaction is directional. They can be data ports or event
ports. Data ports specify the type of data being communicated through a port by referring to an abstract
data type in the source code of the component implementation. Event ports specify control events.
Control events can be raised by a component and they can be accepted by an aperiodic component. An
example is illustrated as follows:

It

port type sensor_ data : source file "Port_types.a";

It

port type actuator data : source file "Port_types.a";

periodic process controller
in port position: sensor data;

out port feedback: actuator data;

end controller;

periodic process implementation controller.impl is
attributes
source_file = "controller.a";
execution time = 4 ms;
period = 20 ms;

end controller.impl;

An application is a collection of interconnected component instances. The interconnections are port-to-
port connections from the output port of one component instance to the input port of another component
instance. The data port connections can be delayed or undelayed. In delayed connections, the receiving
component receives the data available at the time of dispatch, i.e., the data currently produced by the
sender is not available until the next dispatch. For periodic processes this means that data is passed at
period (frame) boundaries. In undelayed connections, the receiving component waits for the sender to
complete, if the sender is active, to receive the latest data, i.e., data is processed as soon as it is available.
This represents midframe communication and precedence ordering between processes. Figure 10
illustrates a simple two-process application. It utilizes the process specification for a controller identified
earlier, as well as an assumed specification for a device.

The analysis of such a system model will determine the following:

s Syntactic correctness of the model: only ports connected to ports (a port is defined in the interface
specification rather than the implementation) etc.

e Satisfaction of connection constraints: connection constraints include direction of a connection from
an output port to an input port, matching of the data type communicated through the port, and limit on

54

the number of connections on a port (multiple outgoing connections and a single incoming
connection).

e Schedulability: given a binding of the application onto hardware components, scheduling analysis can
be performed utilizing the specified timing properties.

Macros and modes are composite components, i.e., their implementations consist of component instances
and connections as illustrated for an application. In addition, a composite implementation specifies which
mput (output) ports of component instances are bound to the input (output) ports in the interface
specification. The binding constraints are similar to the connection constraints, differing only in that input
ports are bound to input ports and output ports to output ports.

5.3.2 Refined Input/Output Port Specifications
In this section we further define the port specification. Notice that an input port specification represents
expected or required constraints on data, and an output port specification represents assertions on the
provided data. We enhance the port specification in the following four ways:
+ Refinement of the data type with measurement unit and coordinate system (measurement reference
point)
Range restrictions on the data values
e Rate of the elements in a data stream
First order range restriction on the data values, i.e., limit on the delta between two successive data
values

In terms of connection and binding constraints this means that measurement unit, coordinate system, and
rate must match between the source and destination of a connection/binding. Notice that the default
constraint for port rates is that data is processed at the rate it is supplied. Designers may choose to over-
or under-sample a data stream. This intention may be documented as a constraint on the port rates of a
particular connection, as shown in the following code:

connections cl.feedback -> dl.input sampled 2:1;

For ranges and deltas it must be the case that the source range and delta must be contained in the
destination range and delta, as shown in the following:

range(source) C range(destination)
and
delta(source) < delta(destination)

These conditions illustrate a refined specification. The controller expects position data about a cart on a
track in centimeters, relative to one track end, and at a rate of 20 milliseconds. The output to the device in
units of volt at the specified rate. The controller also expects setpoints as input at one tenth of the
position/feedback rate. Furthermore, it consecutive setpoints to differ no more than 10 ¢cm, which is the
maximum step size the controller can handle at the given rate. Notice that the data stream rates are
expected to be a multiple of the component execution period specified in the component implementation.

periodic process controller
in port position: sensor data <cm, trackends>
range [0 : track.length] every 20 ms;
in port target: set point <cm, trackcenters>

range [0 : track.length] every 200 ms delta [*.
max_step size];

out port feedback: actuator data <volt>
range [. 4.5 Jevery 20 mg;
attributes max step size = 10;

55

end controller;

The measurement unit and coordinate system can possibly be encoded in the user-defined data types. For
example, a class representing the actuator data (actuator_data) may have several subclasses one of each
unit of measure, e.g., actuator_data_volts and actuator_data_millivolts. In this case the type that matches
the constraint enforces that the same measurement unit is assumed. This, however, may result in a
cluttered class (type) hierarchy. As an alternative, we permit the user to specify measurement unit,
coordinate system and data type. This can be done for every element (field) in a composite type (record).
This approach allows for independent specification of components and delegates checking to the model
analysis. A third alternative is to specify this information in the port type declaration. In this case, all
mstances of this port type satisfy these specification constraints. However, if components are developed
independently, their port type specification sets must be merged to assure consistency between assumed
data characteristics, an activity that corresponds to merging data dictionaries.

5.3.3 Assumptions and Assertions as Propositional Predicates
We introduce the propositional predicate notation in a manner similar to Perry [34] to capture additional
assumptions and assertions about the data communicated via ports. Predicates represent preconditions,
postconditions and obligations. Preconditions reflect assumptions about the predecessors along data
streams, while obligations are assumptions about the successors. Postconditions are assertions made by
components. An example propositional precondition is that the data has been filtered, while an example
obligation is that a setpoint will be reached — as illustrated in the following:
periodic process controller
in port position: sensor data ...;
in port target: set point ...;
out port feedback: actuator data ...;
pre position.sensor data filtered;
post setpoint reached;
end controller;
periodic process supervisor
out port target: set point ...;

obl target.setpoint reached;

Notice that propositional predicates are in essence labels that reflect a certain data characteristic, i.e., a
certain type of processing performed on the data.

To determine whether a precondition (obligation) is satisfied, we check whether the direct predecessor
(successor) can provide the matching postcondition. If the names match, the predicate is satisfied. If the
predicate is in negated form and the names match, the predicate is not satisfied. Otherwise, we continue
the search by checking their predecessors (successors). If we exhaust all of the predecessors (successors)
in terms of connections and we processed a composite component, we check whether the predicate is
declared in the component specification. This means that the precondition or obligation is to be satisfied
externally, a fact that is checked for every instance of this component. Notice that for each postcondition
in a component specification there must exist a component in the composite implementation in the chain
of predecessors, starting with the output port which is bound to the specification without an intervening
negated version of the predicate.

For any given predecessor (successor), its predecessors (successors) are determined as follows:

56

(1) by considering all input (output) ports as predecessors (successors)

(2) by taking into account data flow between input ports and output ports, which may result in a subset of
(1). This data flow may be

¢ provided through explicit user specification of flow from input ports to output ports, e.g., paths
position -> feedback for the controller in

e derived for simple components by program slicing [31] analysis of the source code

e derived for composite components by deriving the flow from their component dependency graph.

(3) by considering an explicitly declared path that represents a data stream through multiple components.
Users can declare the flow of a data stream by explicitly listing a sequence of component instances
even though the data representation, as declared in the port specifications, may change. For example,
paths control_flow: devicel.sensor -> controll.position -> controll. feedback -> devicel.actuator.

In cases (1) and (2) satisfaction of a precondition or obligation by any one candidate is considered
acceptable. In these cases a predicate is being considered as satisfied although it may not be by the
intended path. A refinement by use of a path declaration (case (3)) remedies unintended and incorrect
predicate satisfaction. In other words, the more precise a specification the user provides, the better the
analysis in detecting inconsistencies.

Propositional predicates provide a quick and easy way to document assumptions and assertions. However,
users must be aware that the analysis capability does not understand relationships between different
labels. For example, sensor data may be raw, high band filtered, or low band filtered. If a component
specifies as an assumption that it expects input not to be raw, this precondition (nof raw) is not
recognized as satisfied by a postcondition stating that the data has been high band filtered (post
HB_filtered). The next section introduces property constraints that overcome this shortcoming,

5.3.4 Component Properties and Property Constraints

We can associate properties with components. Properties have constant values, including values of user-
defined enumerated types. Specific property values may apply to all component instances, i.e., values are
specified in the component interface specification, or each instance may have a separate property value,
specified separately with each instance. The example of the shortcoming of propositional predicates can
be modeled similarly to coding shown as follows:

Property type data processing = enum {raw, HB filtered, LB filtered};
periodic process device is
out port sensor: sensor data ...;
attributes processed : data processing = raw;
end device;
periodic process controller is
in port position: sensor data ...;
constraint position.procegsed != raw;

end controller;

The device has a declared property called processed, which is of the enumerated type data_processing and
has the value raw. Enumerations are considered ordered, meaning that values can be compared for

57

equality as well as ordering. Property constraints specify limitations on properties. In our example, a
constraint is specified on the property of a connected component, i.e., a component connected via the
indicated port. For input ports, this corresponds to preconditions, and for output ports, to obligations.

Property constraints can be used in other ways to document assumptions made about the properties of

components.

1. A property value may be used in a range or delta constraint specification. Two examples are located
i Track.length, referring to the property of another component and in max_step_size, referring to a
property within the same component.

A composite component may make assumptions about the relationship of properties of several of its
component instances. For example, the application in

2. may make the assumption that both component instances have the same period, i.e.,
constraint cl.period == dl.period.

3. Component instance properties in the implementation may be constrained relative to a property of
the component itself. For example, the sum of execution time properties of the implementation parts
are to be less than the execution time property specified for the component. In order to support the
cumulation of property values along a path, we have introduced a cumulation construct, which can
be used as part of a constraint. For example, phase delay resulting from a flow path through a
component implementation is expected to be less than the phase delay specified for the component,
ie.,

constraint sum(c.phase delay: ¢ in controlflow.components) <
self.phase delay;

Properties can be used to describe key semantic characteristics of components, such as control
components, without requiring a full set of control equations to be part of the model. Relevant property
values are derived by control engineers and reevaluated as components change. By documenting relevant
properties and assumptions that other components make about them, we can determine potential
mconsistencies, i.e., we can determine otherwise hidden side effects through model analysis at design
time [35].

5.3.5 Incremental Inconsistency Analysis

In summary, design time analysis of a system model can identify the following types of inconsistencies:

e Syntactic inconsistency: syntax and topological constraints are violated.

o Connection and binding inconsistency: connection and binding constraints are violated.

* Resource inconsistency: if the demand for resources exceeds available resources. In particular for
real-time applications, schedulability analysis based on particular scheduling approaches, e.g., GRMA
[33], can determine whether a particular task configuration is schedulable.

e Semantic inconsistency: violation of assumptions expressed as propositional predicates or property
constraints.

o Timing-related properties: period of components and periods of ports; all rates on ports; predefined
timing-related property constraints such as execution time; intentional over- and under-sampling.

A system may have a hierarchical structure, which is modeled with composite and simple components. As

discussed earlier, each composite component has an interface specification that includes properties,
assumptions, and constraints. Composite component implementations are described in terms of

58

mterconnected instances of other components, while simple component implementations refer to the
source code. For each simple component, the analysis tool checks for consistency between the port type
definition in the model and in the source code. Other constraints and assumptions must be validated by
the developer, since much of that information is not directly recorded in the source code. For each
composite component, the analysis tool checks for syntactic, connection and binding, and semantic
inconsistency of the interconnected component instances making up the implementation according to their
mterface specification. Separation of interface specification and implementation allows us to check for
inconsistency incrementally, i.e., one component at a time. Only resource inconsistency analysis
transcends this interface/implementation hierarchy. All components sharing a resource must be taken into
account. However, many resource analyses can be performed considering one resource at a time. For
example, GRMA-based schedulability analysis of tasks on a simple processor without any precedence
constraints can be analyzed one processor and channel at a time.

5.4 Managing Configuration Inconsistency

In Simplex-based systems analytically redundant components may reconfigure themselves, if constraints
that they monitor are violated. The result of this variant change may be a new logical configuration,
which may be known to be inconsistent according to the inconsistency analysis based on the system
model. For example, two controller variants may have different control characteristics, e.g., they may
have different maximum step size or speed. A supervisory component may have a variant that assumes
the higher speed controller. A change from the higher speed controller variant to a slower speed variant
will cause further ARC constraint violations to be observed and variants to be switched, if the supervisory
component variant with the higher speed assumption remains active.

Through design time analysis we can determine which of all possible logical configurations are
inconsistent [36]. From this analysis we can derive configuration constraints, i.e., determine what are
acceptable and unacceptable combinations of ARC component variants. By monitoring violations of these
configuration constraints at run time, we can proactively reconfigure the system to reestablish consistent
logical configurations. Proactive reconfiguration avoids snowball effects and maintains the overall system
performance at a higher level than would otherwise occur.

The results of this analysis can also be used to support changes in system configurations that operators
request. Operators may be presented with choices that include only consistent configurations.
Furthermore, when given a desired configuration, we can determine the most appropriate way to
reconfigure the system.

In this section, we illustrate how ARC-based components are described, discuss how these configuration
constraints are determined through analysis of the system model, and describe what it takes to monitor
these configuration constraints at run time and to support operator reconfiguration requests.

5.4.1 ARC-Based Component Modeling

ARC-based components appear to other components as regular components. The interface specification
indicates input and output ports. An ARC-based component implementation consists of component
instances that represent the safety, baseline, and upgrade variants. The input and output ports of these
variants are bound to the ports in the specification. The constraints associated with the ports in each
variant may differ from each other. For example, the acceptable range of values for setpoints may be
larger for the upgrade variant than the baseline variant resulting in a higher speed characteristic. Notice in
the example code that follows that a variant may service only a subset of the ports.

59

periodic process recovery control is
in port position: ...;
out port actuation: ...;
end recovery;
periodic process normal control is
in port position: ...;
in port setpoint:... delta [*. 15];
out port actuation: ...;
end controller;
periodic process high speed control is
in port position: ...;
in port setpoint:... delta [*. 25];
out port actuation: ...;
end controller;
periodic process controller is
in port position: ...;
in port setpoint: ...;
out port actuation: ...;
end controller;
periodic process implementation controller.impl is ARC
safety recovery control;
baseline normal_ control;
upgrade high speed control;

end controller.impl;

if the safety variant is the leader, the setpoint port is not serviced. As a result, we may have an
inconsistent configuration if the connected component or component variant expects setpoints to be
processed, i.e., its output port is connected. Similarly, a switch from the upgrade to the baseline variant
may result in an inconsistent configuration if the supplied setpoints fall outside the smaller delta range of
the baseline variant.

An ARC-based component is instantiated and connected to other components in the usual way, as
illustrated in Figure 24.

60

device

supervisory controller

Figure 24. Interconnected ARC-Based Components

Only the solid connections have to be explicitly declared. The dashed lines represent the binding between
the ARC-based component ports and the respective variant ports. They are inferred from the port names.
The interconnection topology of these instances determines how component variants communicate with
other components. From this topology and the port bindings, we derive logical configurations and their
topologies. These system models are subjected to the consistency analysis described in the previous
section to identify inconsistent configurations.

5.4.2 Configuration Constraints

Beladi [37] and Hiltunen [38] have shown that configuration constraints can be used to identify
nconsistent configurations. A configuration constraint indicates whether a certain combination of
component variants is acceptable or unacceptable. For example, in a system of three ARC-based
components (A, B, C), the configuration {A.baseline, B.baseline, C.baseline} is acceptable, while
the configuration {A.baseline, B.safety, C.baseline} is unacceptable. We may also know that the
combination {A.baseline, B.safety} is unacceptable for all variants of C. This knowledge of
acceptable or unacceptable configurations may be supplied by the users based on their experience with
and observations of the system. In this case, users can explicitly record these configuration constraints in
the system model. They can do so for an application and for each of its subsystems that are represented by
composite component implementations. One of the constraints in the acceptable constraint list must be
satisfied, while none of the constraints in the unacceptable list can be satisfied. In other words,
Acceptable C11, C12, C13; Unacceptable €21, c22; with Cj representing constraints as shown,
mmplying (C;; or Ci; or C;;) and not (C,; or C;).

Configuration constraints can also be derived from inconsistency analysis. A naive approach is to simply
record all configurations for which inconsistencies are determined as unacceptable. The cause of the
mconsistency can be taken into account when recording the constraint. For example, the connection
between components A and B is inconsistent for variant A.baseline and B.upgrade. This inconsistency is
due to a violation of a range constraint and applies to all configurations that contain {A.baseline,
B.upgrade}. Thus, the analysis tool can capture the root cause of this inconsistency as a derived
unacceptable {A.baseline, B.upgrade} rather than recording all possible configurations containing
this combination. Similarly, property constraints on composite component implementations may involve a
subset of the component instances. In this case, only this subset can be considered in identifying a
configuration constraint. Furthermore, the set of already declared and derived configuration constraints
can be applied to determine whether a full logical configuration can be skipped in deriving a
configuration constraint from consistency analysis, since they are already known to violate a constraint.

61

This reduces the number of logical configuration permutations that must be considered for a full
consistency analysis.

5.4.3 Run Time Recovery from Configuration Inconsistency

When a component implemented as an ARC reconfigures itself, we know that we potentially have an
inconsistent configuration if the new variant is part of at least one unacceptable variant constraint. The
variant constraints, which contain this variant, list the other components that may be affected. If the active
variant of any of those other components corresponds to the variant in the constraint, then it will have to
be reconfigured. Their reconfiguration may trigger other configuration constraint violations, and this
process is repeated until the transitive closure is reached, i.e., when all inconsistencies have been
eliminated. Notice that the number of iterations through this process is bounded and can be determined at
design time.

Proactive recovery from inconsistent configurations can be implemented through central agent, or it can
be distributed across the ARC run time support mechanism of the affected components. Let us examine
each in turn.

in the case of a central agent, all ARCs that are involved in any configuration constraint must report a
change in their variant state, i.e., a change in active variant, to the agent. The agent then consults the
variant constraints to determine whether and which components have to be asked to reconfigure
themselves to reestablish consistency. The variant constraints can be organized into a lookup table for the
agent to quickly determine the transitive closure of affected components, i.e., the change set. Based on
this change set, the agent requests the respective components to reconfigure themselves. This central
agent solution requires variant status connections between all components and the agent, as well as the
ability of the agent to cause variant reconfiguration in any component. Furthermore, the agent must
maintain a consistent view of the current system configuration despite the fact that individual components
may reconfigure themselves.

The distributed solution takes the following approach. From the set of variant constraints we can
determine at design time which components need to be aware of changes in the variant state of another
component. In other words, we can determine the necessary connections to communicate changes in the
variant state. Potentially affected components will check the incoming variant state against their own
according to the variant constraints relevant to them and reconfigure themselves as necessary. This
component reconfiguration may itself cause other components to be affected, i.e., propagate through the
transitive closure. In essence we have extended the responsibility of the MDU in an ARC to monitor not
only safety region constraints and performance constraints, but also configuration constraints. This is the
solution that has been chosen in multicomponent Simplex prototypes (the coordinated pendulum).

If the variant state is communicated periodically at the rate that the components operate and communicate
application data, the distributed solution will have the effect of reaching a consistent configuration that
may take more than one period. Fortunately, in the domain of control systems there is enough lag [39] in
the system to tolerate temporarily inconsistent configurations, which permits the incremental execution of
reconfiguration steps within time bounds.

If this iterative solution is not acceptable in a particular system, the transitive closure can be translated

into additional variant state communication connections and additional conditions to be checked by all
components affected by a reconfiguration.

62

Notice that many control applications have continuous feedback controllers and supervisory controllers.
Supervisory controllers are responsible for operating the feedback controllers appropriately, and can thus
take the responsibility for managing the inconsistency that results from a component reconfiguration due
to a fault. Thus, we can limit explicit variant constraint checking status of peers and supervised
components. In the coordinated pendulum prototype [40], the coordinator will adapt to reconfigurations in
the feedback controllers, while the feedback controllers are assumed to be ignorant of reconfigurations in
the supervisory controller. The coordinator monitors the variant state of both pendulum controllers. If
either of the pendulum controllers is executing the recovery variant, the coordinator switches itself to a
control mode (variant) where the second pendulum controller is following the other in order to avoid
misalighment. Similarly, the coordinator monitors whether either of the pendulum controllers switches
from an upgrade variant to a baseline variant. In this case, it switches to a control mode (variant) that
operates the pendulum controllers at the slower baseline speed.

5.4.4 Managing Reconfiguration Requests

Consistency of reconfigurations requested by operators can be assured by limiting the operator’s choices
to configurations identified as consistent by design time analysis. Reconfiguration from the current
configuration to the desired configuration may involve reconfiguring a number of components. Individual
components with multiple variants may not be able to immediately switch to a requested variant. For
example, the controlled plant must be brought within the operating region before control can be given to
the desired variant. Thus, an operator requested reconfiguration may not be immediately achievable.

it is desirable to reduce the risk of staying in inconsistent configurations for longer periods of time during
an operator-requested reconfiguration. We can do so by determining whether the desired configuration
can be reached in multiple steps by reconfiguring to intermediate consistent configurations that have steps
that require a smaller number of components to be reconfigured. We can view the set of consistent
configurations as nodes in a graph. The edges between the nodes represent the change set, i.e., the
components that need to be reconfigured to change from one configuration to another. These edges are
weighted by the size of the change set.

Given two nodes in the graph, i.e., the current configuration and the target configuration, the goal is to
identify a path whose edges have minimal weight. In addition, the path should be as short as possible, i.e.,
only those edges and change sets that reduce the number of components to be reconfigured should be
considered.

To perform this analysis effectively, we start with a fully connected graph. Through design time analysis,
we reduce this graph to a minimal graph by eliminating edges if a path exists with lower weighted edges.
This minimal graph can then be used at run time to identify a path between the current and the target
configuration with the minimum number of component reconfigurations per reconfiguration step. More
than one path with minimally weighted edges may exist. For example, reconfiguration from the current
configuration to the target configuration may involve five components. Two minimum weighted paths
may exist, one involving two reconfiguration steps that involve two components, and one step involving
one component. The other path consists of one step that involves two components and three steps
involving one component. In this case we have the choice of minimizing risk by choosing the path with
the smaller number of higher weighted edges, or minimizing the number of intermediate steps.

5.5 Analyzing the Impact of Change
The model also supports impact analysis, i.e., “identifying the potential consequence of a change, or
estimating what needs to be modified to accomplish a change” [41]. Impact analysis can occur in two

63

forms: identification of all potentially affected components given an intention to change a component; and
determination of actually affected components given a completed change and the incremental propagation
of this change as affected components get corrected. The effectiveness of impact analysis in identifying
affected components is strongly influenced by the granularity of a change. Let us illustrate with some
examples.

A change to a component interface specification impacts all composite components that contain instances
of this component. We can further identify which portions of those composite component
implementations are affected by utilizing the component connection graph. Potentially, all direct and
indirect predecessors and successors of the component instance whose interface changed are affected.
Similarly, the interface specification of the component may be potentially affected. Furthermore,
component instances that are part of a property constraint that refers to an affected instance may be
potentially affected. Any of the potentially affected components may require modification, resulting in
propagation of the change.

A change to a component implementation potentially affects the component interface specification. The
change may result in different resource requirements, i.e., for all instances of this implementation,
component instances sharing resources are potentially affected. Again, any of the potentially affected
components may require modification, resulting in propagation of the change.

The actual impact of a change to an interface specification is determined by considering the potentially

affected components as candidates and reevaluating the constraints associated with them against the

changed component. Given the changed interface specification, all composite component

implementations containing instances of this specification are reanalyzed for inconsistency. This involves

reevaluating the following:

e connection and binding constraints associated with the instance to determine whether the connected
component or the composite specification is actually affected

o satisfaction of preconditions and obligations associated with the instance to determine whether the
composite implementation becomes inconsistent

s preconditions and obligations of all direct and indirect predecessors and successors that refer to the
mstance's postconditions

e property constraints that include an instance of the changed interface.

The results of the reevaluations determine whether the potential candidates are actually affected.

The actual impact of a change to a component implementation is determined by reevaluating the
component implementation itself and by validating it against its interface. An inconsistency between the
mterface and the implementation may be resolved by a change to the implementation or to the interface.
The latter causes incremental propagation of the change. In addition, schedulability analysis (and other
resource constraint analysis) of resources that include an instance of the changed interface must be
performed again.

We may have more knowledge of the change, e.g., that it is a change to a specific port or some specific
characteristic of a port, a change in property values or constraints, or a change to a component instance or
a connection. Let us examine in more detail the changes to ports and to properties.

A change to a port can occur in a component interface specification. Potentially affected components are

those connected to the modified port for each instance of the component, if the change involves
characteristics relative to connection constraints. Their connected port is considered potentially affected,

64

which in turn may affect that component's implementation as well as other ports related through data
flow. If the change is to predicates then earlier stated rules for predicate, reevaluation identify potential
candidates.

A change to a property value may be specific to one instance or may affect all instances of a component
specification. A property value is potentially used in range and delta constraints or in property constraints.
In the former case, the respective port characteristic is affected by the change and propagated accordingly.
In the latter case, the properties of all component instances involved in a property constraint are
potentially affected and handled accordingly. Changes to resource properties, such as timing, potentially
affect timing properties of other components sharing a resource. The relationship between port rates and
component periods represents an implicit property dependency that must be taken into account. We also
support explicit declaration of property dependencies. Such declarations allow developers to capture the
essence of relationships between properties that may exist and are embedded in detailed design and
analysis models, and not lose sight of those facts. For example, the maximum step size acceptable to a
controller component is dependent on the period at which it is processed. The details of the relationship
are embedded in control equations, but the fact that one property affects the other is captured in the model
and can be utilized during impact analysis. The dependency can be denoted as “—>,” which can be
interpreted as “depends on” or “is a function of.” Changing the right side property potentially affects the
left side property. One property can be dependent on multiple properties. Properties may affect each
other, expressed as “ <> .” An annotation to this dependency can provide a reference to the detailed design
model to be reevaluated to determine the actual impact.

In summary, the following relationships must be taken into account when determining the impact of a

change (see also [42]):

+ interface-instance relationship: all instances of a component with interface modifications are affected

+ interface-implementation relationship: all implementations of a component are affected by changes in
the interface specification

¢ part-of relationship: ports and properties are part of components, and component instances are part of
composite component implementations

s connection relationship: component instances may be affected through interaction
binding relationship: an instance port in an implementation may affect the component interface and
vice versa

¢ resource relationship: components sharing resources affect each other with respect to relevant
properties

s property definition-use relationship: property values are referred to by range/delta specifications,
property constraints, and property dependencies

s property constraint and dependency: properties affect each other and the components with which they
are associated.

5.5.1 Reducing the Impact of Change

The number of impacted components can be reduced in two ways: reduction of dependencies, and
reduction of assumptions, i.e., relaxation of constraints. Reduction of dependencies requires restructuring
of the system by introducing new abstractions and localizing information. The result is a simplified
system interconnection structure. Reduction of assumptions results in fewer constraints that can be
violated as a result of a change. Relaxation of a constraint means that it is easier to satisfy the constraint,
1.e., more variation is acceptable. Reduction and relaxation of constraints has the effect of an increased
propagation barrier in that there is less chance that a change will affect other components. Let us illustrate
how reduction and relaxation of constraints can be achieved in practice.

65

A component may be redesigned to be more flexible, i.e., fewer assumptions are made about the
interaction with other components. For example, the precondition HB_filtered may be removed if a
controller implementation has been modified to handle unfiltered data. Similarly, the obligation of a
setpoint being reached may be removed, if the supervisory component has been redesigned to be closed
loop, i.e., the component takes into account feedback and adjusts its output accordingly. A component
may have been modified to accept data that has been augmented with metadata such as the measurement
unit used. As a result, it does not make assumptions about the measurement unit. A component design
may also be examined or redesigned to accept more variability in data or property values. For example, a
controller may be able to maintain stability within a range of sampling rates [43]. This can be reflected in
the model by specifying a range for the input arrival rate. Similarly, sensitivity analysis of a set of tasks
for schedulability [44] may determine that the schedulability constraint remains satisfied within a range of
execution time values for components sharing the resource.

The concept of compatibility can also contribute to reducing the impact of change. Variants of a
component can be compatible, i.e., they are interchangeable with respect to their interaction with other
components. The concept of compatibility has been investigated and formalized previously [45, 46, 47].
In our context, two types of compatibility are of interest: strict compatibility, and upward compatibility.
Two variants are considered strictly compatible if other components are dependent only on an interface
specification that is satisfied by both variants. This means that replacement (either upgrade to reflect a
change or run time switching within an ARC) of one variant or the other in either direction has no
detectable side effects. A variant is considered upward compatible with a second variant if the first variant
can replace the second and all specified dependencies by connected components continue to be satisfied,
1.e., a reconfiguration from the first to the second variant has no side effects. This does not hold for the
inverse.

In our context these conditions can be expressed as follows. Variant B is upward compatible with variant
Aif

elem(A.in) D elem(B.in) ~ range(A.in) Crange(B.in) ™ elem(A.out) < elem(B.out) »

range(A.out) D range(B.out)" pre(A) 2 pre(B) ™ post(A) < post(B) ™ obl(4) < obl(B).

Variants are strictly compatible if they satisfy a common interface C, i.e., an interface that other

components are matched up with, (x(4/B) < x(C) being a shorthand for x(4) < x(C) ~ x(B) < x(C):
elem(A/B.in) C elem(C.in) ~ range(A/B.in) 2 range(C.in) ™ elem(4/B.out) 2 elem(C.out) »
range(A/B.out) < range(C.out) ™ pre(4/B) < pre(C) ™ post(A/B) 2 post(C) ~ obl(4/B) < obl(C)

In practice, compatibility between two component variants or implementations means that other
components make fewer assumptions about a component than is reflected in the interface specification.
This means that declaring fewer component properties and assumptions as externally visible can reduce
the interface specification.

5.6 The Analysis Tool

Our prototype implementation of an analysis tool demonstrating the above capabilities is based on the
Java-based toolkit for Acme [48]/Armani [49], an ADL interchange notation and constraint engine. Our
notation MetaS (MetaH with extensions) is mapped into an Acme style and into Armani invariants,
heuristics, design analyses, and external Java functions. AcmeStudio provides a graphical front end for
the Acme-based representation of our notation.

66

Application models can be developed and maintained in three ways: in MetaS, in Armani/MetaS, and in
AcmeStudio. In the first two cases, application models are edited in textual form. MetaS descriptions are
then translated into Armani/MetaS. Armani/MetaS descriptions are processed by the Armani toolkit,
based implementation of our analysis tool. AcmeStudio provides a graphical front end for developing
Armani/MetaS descriptions. AcmeStudio stores these descriptions in textual Armani/MetaS form. The
analysis capability can be directly invoked from AcmeStudio and the results of the analysis reported back
within AcmeStudio.

5.7 Summary

In this section, we have described a design time analysis approach for avoiding faults to complement the
fault tolerance capability of INSERT. Many residual faults are attributable to hidden side effects of
changes that are due to assumptions made about component characteristics that are specific to the
application semantics that are often time sensitive in nature. We have introduced a notation based on an
ADL for real-time embedded systems to support modeling of avionics applications. This ADL has been
extended with constructs to capture these additional properties and constraints. Such application models
can be analyzed for several types of inconsistency. In the context of INSERT-based applications, the
results of such inconsistency analysis can be used to derive configuration constraints. By monitoring such
configuration constraints at run time and proactively recovering to consistent configurations, we can
improve the overall system performance. Finally, the application model can be used to assist in
identifying the impact of a change.

We have demonstrated the feasibility of such an analysis capability by the prototype implementation of an
analysis tool. This prototype implementation is based on Acme/Armani EDCS technology.

67

6. An Application of INSERT Technology

6.1 Introduction

Developers of high assurance software systems face increasing challenges as their products
evolve and increase in complexity. Costs must be controlled, but safe, predictable operation must
be guaranteed throughout the product life cycle. This places great importance on the ability to
confidently perform repeated incremental upgrades. Solutions to the incremental upgrade
challenge must preserve and isolate “untouched” existing functionality, allow new capability
additions, and provide safety backup coverage in the event of latent errors within newly added
components.

Use of commercial components is seen as a significant avenue for reducing costs in DoD systems.
As a result, the INSERT architecture (Figure 25) starts with a hardware platform based on
commercially available CPU, memory, and /O devices. On top of that, a commercial Real-Time

Avionics
Application Brick Wall
(Replaceable Partition
Unit)

Dynamic
Program
-~ Binding &
Activation

-
——
-

INSERT Middleware

| COTS Interrupt| COTS Device
Handlers Drivers

Target Hardware ory, I/O devices) |

Figure 25. INSERT Architecture

Operating System (RTOS) runs along with COTS interrupt handlers and device drivers. The
RTOS is based on the IEEE POSIX standard, which provides maximum portability between
Unix-based operating systems as well as real-time extensions to provide deterministic computing.

The INSERT middleware is a set of architectural constructs that makes maximum use of the
hardware and RTOS features to provide high assurance capabilities. The various avionics
computer programs, known as replacement units in the INSERT system, operate on top of the
INSERT middleware. The INSERT middleware insulates the applications from the underlying
RTOS and hardware. The middleware also provides dynamic binding and activation of each
replacement unit, provides run-time safety monitoring, prevents corruption of code and data in
one program by another, and allows dynamic reconfiguration.

The avionics application software is partitioned into separable units, and with each Computer
Software Configuration Item (CSCI) can be hosted in its own virtual memory partition. The
CSCls interact and communicate necessary information using asynchronous messages. To ensure
that each of the independently scheduled, dynamic programs are able to meet necessary

deadlines, the well established techniques of Rate Monotonic Scheduling [50, 51] and Rate
Monotonic Analysis [52] are used. If a fault is detected, backup replacement units can be

68

activated to guarantee a specific level of performance. New capabilities can be safely integrated
mto the system while it is on-line.

6.2 Methods, Assumptions, and Procedures

The INSERT project required integration of the technology into an actual weapon system—in this
experiment, the F-16 AFTIs avionics software. We used an F-16 AFTI simulator, complete with
a functional cockpit that includes controls, instrumentation, and displays. The AFTI simulator
employs the same General Avionics Computer (GAC) found in the aircraft. The original
Operational Flight Program, or OFP, is hosted on a MIL-STD-1750A 16-bit processor,
communicating via a MIL-STD-1553B data bus. The original OFP, coded in the JOVIAL
programming language, was modified to remove pieces of the avionics algorithm and replace it
with a series of bus controller commands to communicate with another remote terminal added to
the 1553 bus. For this case the remote terminal was an Intel-based PC running the INSERT
platform.

6.2.1 Hardware and Software Specifics

The re-hosted code implements the F-16/AFTI AMAS. The AMAS is a fully automated, hands-
off weapon delivery algorithm that provides a stand-off capability using a curvilinear flight path
approach to the target. The GAC determines the correct flight path and attack profile and can
either provide steering cues to the pilot via the head up display or can be coupled directly to the
aircraft flight control computer, allowing the aircraft to automatically fly three phases: Ingress,
Non-wings Level Attack, and Egress.

The desktop PC has an Intel Pentium II 233 MHz processor and is configured with the Lynx real
time operating system, Version 2.5.0. The PC was augmented with the System Timing Analysis
Tool (STAT) hardware timer card by Alpha Logic Technologies. This allowed us to gain
increased timer granularity (as small as 250 nanoseconds) as compared with the standard Intel
and POSIX clock mechanisms. Communication with the AFTI Simulator was via a 1553B data
bus device that is packaged in a Personal Computer Memory Card International Association
(PCMCIA) card format from Excalibur Systems, Inc. The ported JOVIAL AMAS application
code was translated to C/C++ and compiled using the GNU compiler suite.

The PC is connected using standard coaxial cable to the F-16 simulator’s bus system. After
translation into C/C++, the ported AMAS code was “wrapped” in the INSERT architecture to
make use of the advanced capabilities previously discussed. In fact, the INSERT technology
provided an easy skeleton of C/C++ source code into which to plug the application.

6.2.2 Risk Reduction Steps
The re-engineering of OFP and the integration of the PC with the 1750 proceeded in four stages:

1. The first was to remove the Egress part of the algorithm (the phase of flight following
weapon release) from the OFP, translate it to C, and test it. This risk reduction step was
performed because the Egress part of the algorithm has minimal complexity and requires
minimal data transfer across the1553 bus. This phase also required development of a driver
for the PC 1553 card. By limiting this first experiment's size we could ensure the timeliness
of'the PC and 1553 communication protocols with the simulator.

2. After successful integration, we wrapped the Egress algorithm in the Simplex code (written in
C) provided by Carnegie Mellon University (CMU). The goal was to take advantage of the

69

small size of the algorithm to effectively evaluate the impact of the middleware's messaging
and analytic redundant concepts on overall system timing.

3. The third step involved migrating the entire AMAS algorithm to the PC as a stand-alone
application without the Simplex middleware. The goal was to simplify the evaluation and
confirm that the timing constraints were being met and that the interface between the two
computers was complete and correct.

4. The final integration experiment used the full AMAS with the Simplex architecture engaged.
This phase actually required only a week of effort to complete, mostly due to the difficulties
n timing and messaging being resolved by the first three risk reduction steps.

6.2.3 Basic INSERT Operation

INSERT's basic structure is the replacement unit. By using a name-tagged publisher/subscriber
communication technique, INSERT can dynamically add or delete tasks from run time execution.
These tagged communications are built upon IEEE POSIX message queues supported by
LynxOS. In addition, LynxOS supports 256 different priority levels for process and threads.

This approach provides flexibility in dynamically activating or deactivating the processes as well
as their communication links. The middleware is comprised of these data-tagged communication
processes, a replacement manager task, a decision logic process, and a timer process to enable the
STAT timer.

The INSERT PC runs three different algorithms that can control weapons delivery: the baseline,
upgrade, and backup controllers. The baseline controller uses a reliable algorithm that can fly the

MIL-STD
1553B

Figure 26. INSERT Messaging

aircraft through a weapon delivery that has previously undergone extensive testing to ensure a
high degree of reliability. The upgrade controller implements an “improvement” to the baseline
that the developers need to evaluate. Examples of improvements include increasing the accuracy
of the algorithm, modifying it for a moving target, or changing the aircraft maneuvering

70

parameters. The backup, or safety controller, which is used only when severe errors are detected
in both the baseline and upgrade controllers, discontinues the attack and transitions the aircraft
mnto a terrain following ground collision avoidance mode. As a result of multiple versions
coupled with monitoring and switching infrastructure, INSERT provides a guaranteed level of
system performance at all times. Residual errors existing within experimental components are
prevented from propagating and the system recovers in real-time by invoking a trusted backup
component.

The data flow is shown in Figure 26 with the sequence numbers indicating the order of messages.
The physical I/O task runs a timer thread that will generate a message to a queue that is read by
the physical I/0 task. Upon receipt of 1553 data, the timer thread sends a message to the physical
1/O task which then retrieves data from the 1553 card.

Table 11. Process Priorities

Process/Thread Priority
RTOS terminal and XWindows <=17
Minimum priority for INSERT 20
application (PRI_MIN)

1553 data arrival thread PRI_MIN
User interface initialization PRI_MIN+30
User interface real-time PRI_MIN
Console handler PRI_MIN
Command and control handler PRI_MIN
Physical I/O PRI_MIN+25
Decision module PRI_MIN+20
Baseline controller PRI_MIN+15
Upgrade controller PRI_MIN+10

Process and thread control is established using the RTOS prioritization and scheduling services.
The various priorities are shown in Table 11. The use of the RTOS scheduler and prioritization
makes adding extra processes, more variants, and modified code far simpler than in the legacy F-
16 cyclic executive.

The selection of the run time priorities is critical to the correct operation of the system.[53] The
user interface initialization task is the highest but stays at this level only during the starting of the
PC. Since the system is data-driven by 1553 messages received from the GAC, the physical VO
process has the highest priority but blocks until it receives the solution from the decision module.
The decision module has the next highest priority because of the need for it to be able to awake
after its midframe suspension. To ensure that a solution will be available should the upgrades
experience hard failures, the baseline controller, which represents a more trusted process, has
higher priority than any of the upgrade variants.

Figure 27 depicts the scheduling time line. The processes are scheduled in order of their

priorities but are blocked or suspended depending on the availability of data in their message
queues.

71

Blocks on
Recv 0CKS O

Receive from Dec i
1553 M:Sifrlame Sends Waits on
J) eay 1553 1553
B B

Phys /0 Block R Decision

fr?)fn ;gns 17(0)V Midframe Suspend Awakens ¢ Calc Complete; Blocks

Y * on Recv from Phys I/0
- B B B

Decision

Calc Complete;
Blocks on Recv

from Phys 1/0 | from Phys 1/0
Baseline i B _ B

Blocks on Recv
from Phys 1/0

Blocks on Recv

Calc Complete; Blocks on

i Recv from Phys 1/0
v B B
Upgrade
1 I >
Frame TIME Frame
Begin End

Figure 27. RTOS Scheduling

6.2.4 Modeling Practical Design Constraints

Object-oriented (OO) application design methods focus on “packaging or grouping” application
data and computational procedures with the goal of achieving a maintainable lexical structure.
There are many sets of notations and language semantics for OO representations in use currently.
In general, OO techniques build on the concepts of information hiding and interface
standardization. Often, OO techniques focus on developing class hierarchies of reusable units of
behavior and data, referred to as Abstract Data Types (ADTs).

The real-time software industry has been quick to adopt OO methods, as they promise reduced
life cycle costs and enhanced ability to upgrade fielded applications. While OO implementations
often increase function call overheads, this problem is generally well understood and can be
solved through better measuring, or rendered irrelevant by a faster processor.

6.2.4.1 Reliable and Cost-Effective Migration of Code (JOVIAL to C/C++)

In this phase of the INSERT research project, the F-16 AMAS algorithm was re-engineered from
JOVIAL into a Unified Modeling Language (UML) design using the Rhapsody Tool from Ilogix,
Inc. The C++ code was automatically generated and the resulting executable was hosted on the
Intel based PC running the LynxOS RTOS. This variant is similar to the experiment described in
para. 3.2.C.

We were originally tasked in year three to re-engineer the AMAS code into an OO format. We
would then wrapper the MMC Software with Simplex and mesh the AMAS into this MMC
architecture. Because of the extreme success of the year two demo, with the customer’s
concurrence, the year three objectives were modified: change the avionics target and look at
reliable software modeling approaches for re-engineering the AMAS. The MMC conversion was
dropped in favor of evaluating fault-tolerant approaches on the newer LM-Aero middleware: the
Advanced Software Execution Platform (ASEP). The ASEP is built in C++ using the Rhapsody

72

Toolkit from Ilogix. The AMAS re-engineering task was performed using the UML and
Rhapsody.

6.2.4.2 Manual Effort

As previously mentioned, JOVIAL to C conversion of the modules was manually performed in
the first year with integration, test and execution on the F-16 AFTI Simulator. A restructuring of
the C code into a format that would fit with Simplex was performed in the second year. The LM
Aero - FTW JOVIAL programming standards called for developers to place one function within
one individual file or module. The converted files were originally converted to C using a one-to-
one file conversion process: for example "AGSUST.J73" became “agsust.c”.

Table 12. AMAS Rehost to Final INSERT C Format

Task Hours
Code translation (JOVIAL to C) 200
Redesign and test of C 500
Redesign, integration, debug on PC with INSERT 465
CMU/SEI INSERT integration support 60
TOTAL | 1,225

This phase yielded a total of 45 C-code files and 13 header files. Initially, the COMPOOLS were
treated as global variables and the code was compiled, integrated to the simulator and tested.
These were then restructured into a more conventional C-like style. Subroutines (modules) were
gathered into clusters of fewer C files according to logical grouping of functionality. Since the
new code was now running on a distributed Intel PC, many of the COMPOOLSs were formed into
structures that would either facilitate the 1553 communication or be logically grouped depending
on coupling and cohesion factors. In addition, with the reduction of the COMPOOLSs the use of
parameters to pass information between function calls necessitated a further structuring of data
variables. Not all “global” variables were converted. Some were left as is due to the nature of
the problem.

6.2.4.3 Auto Code from UML Tools

This part of the experiment was accomplished by tasking an individual knowledgeable in
Rhapsody but not familiar with OFP development. He was given AFTI documents containing an
overview of the AMAS algorithm and was tasked to produce an initial UML Rhapsody Model
including an object diagram, sequence diagram, and state charts. After the initial model was
designed, he was given access to the source code of the final “AMAS only” C version (the one
that was wrapped into Simplex) and then added the methods and attributes to the classes. These
steps were taken to “emulate” the idea of top level design without preknowledge of a solution.
(While this author could have done this, my intimacy with the current C code version could
potentially “bias” the OO design.)

After the engineer finished the modeling step, he and I reviewed the design, made some tailoring
decisions, and revised the model. This step was necessary because the original UML model (and
documents) assumed an AMAS running on a single processor. In actuality, with the distribution
of the algorithm on the Intel PC, the break was not as clean as the OO analysis would predict.
The AMAS in reality ran mostly on the PC, but parts of it still ran on the GAC. Even more of a
nightmare was that the state machine logic resided mostly on the PC but some on the GAC. In
reality either machine could trigger transitions and both had to stay in sync! Thus we had to

73

modify the original design to accommodate the existing legacy C code. The Object Model
Diagram (OMD) is shown in Figure 28. (NOTE: It should be pointed out that a couple of the
class blocks are placeholders at this time for future work on INSERT and are not shown with any
associations.)

AMASAttackModel::Physicalinterface

Device_CORBA

Device_1553 i

evProcessingFinished()
setOutgoing{amas_outputs_t

AMASAttackModel::Utits|
Aroraft Utilities
1
L SUATAN(float NUMERAT
Curvili i L SUDELTM(int & Time_Ma
SUDOTP(VECTOR_TYPE
1
evSetupCurvilinear()
evProcessData()
evApptMode()
BaselineController 1 evNonApptMode()
getOutputs(}
; setlnputs(amas_inputs_t parmincomin
BaselineControtter{)
getOutputs(}
settnputs(amas_inputs_t

Figure 28. Object Model Diagram

Once the UML model was finalized, the process of moving the implementation code began.
Most of this part of the re-engineering was handled by me because of my familiarity with the
code and the lack of OFP experience on the part of the young engineer. The structures, constant
declarations, attributes, and methods were created in the Rhapsody model using a text editor to
reference the “legacy” C files. About 80 percent of the original C code could be cut and pasted
directly into the Rhapsody model with the remainder, structures, and type definitions, for
example, being created by hand within Rhapsody. In the conversion, functions became methods,
variables became attributes, and so forth, along with defining the public/private access to all
methods and attributes. Accessor and mutator functions were created within Rhapsody .
Constructors were added and state machines using the Harel notation within Rhapsody were
added to two of the classes.

Rhapsody does not support code generation to all RTOSs. However, they do provide a
mechanism to extend the tool so that users can build the correct libraries for the target
environment as well as generate the correct application files for the target. This setup task
required 68 hours and was well documented and very straightforward.

74

The end result of this effort was a “code complete” UML model from which we could generate
compilable code. In fact the code was moved to the LynxOS machine and compiled without error
on first try. An additional 10 hours of integration and test were required to get the C++ version
working.

6.2.4.4 The Experiment Using Automated Re-Engineering Capability
Within the same time frame as this effort, the AFRL/IFTA, together with LM-Aero was
demonstrating a re-engineering capability under the Embedded Information Systems Re-
engineering (EISR) project. The goal of EISR was to develop and demonstrate an automation-
assisted re-engineering capability for transforming JOVIAL source code into C (Contract #
F33615-97-D-1154-002). Xinotech Research, Inc., a vendor specializing in source code
transformation tools, was subcontracted to LM-Aero to extend their existing product line by
adding a JOVIAL-to-C conversion capability. A collaborative effort to repeat the experiment
using the EISR capability was initiated.

The engineer responsible for evaluating the EISR capability generated the C code from the
JOVIAL code, compiling it, and ensuring its syntactic accuracy. The EISR has between 92-98
percent coverage in correctly converting all code. The last few percent has to be hand massaged.
This effort required 24 hours versus the several hundred hours required in the original manual
effort.

A senior software developer with F-16 OFP and Rhapsody experience was tasked to repeat the
experiment. The EISR-converted C code was provided to this engineer, along with the AMAS
documents (the engineer had not worked AMAS previously).

As expected, the UML model was different in organizational pattern but still behaviorally
equivalent. In this case, the engineer handled the entire conversion effort alone. Differences
between the two experiments regarding individual hourly efforts are as follows. In the original,
the time to create the Rhapsody model was for the first skeleton that this author reviewed. In
addition, I was responsible for completing the move of the code and development of the model so
that the task of “moving” the C code into the Rhapsody model included some “massaging” of the
model. In the first experiment, my knowledge of LynxOS resulted in a smaller effort to compile
the program. In the second, the engineer found some problems with the code in his model that
required more time to correct during the compilation phase. Corrections were made within the
model and Rhapsody re-generation of the code was accomplished so that the model always stayed
in sync with the target.

75

6.3 Results and Discussions
6.3.1 Processor Utilization Performance of INSERT Middleware
6.3.1.1 Data Gathering Procedures

To analyze the performance of the middleware, the STAT card, accessed via a Unix “ioctl”
device driver call, was configured to provide a timer granularity of 1 pus. Each call to the card
provides the elapsed time since card activation. Logtime calls were made at points of interest in
the various process modules.

Table 13. Event Message Logging

Event Time |Source| Event Message Calc Phase of
(seconds) Flight
158.078499 PIO Wait1553 Ingress Nwl_atk
158.078529 PIO Endlog Ingress Nwl_atk
158.092060 PIO Pre_recv1l553 Ingress Nwl_atk
158.092284 PIO Recv1553 Ingress Nwl_atk
158.092322 PIO Pre_msgsent Ingress Nwl_atk
158.092431 PIO Msgsent Ingress Nwl_atk
158.092505 | DEC Physiorecv Ingress Nwl_atk
158.092538 | DEC Endlog Ingress Nwl_atk
158.092567 | DEC | Beforemidframe | Ingress Nwl_atk
158.092653 SIM Physiorecv Ingress Nwl_atk
158.092728 SIM Msgsent Ingress Nwl_atk
158.092760 SIM Waitphysio Ingress Nwl_atk
158.092790 SIM Endlog Ingress Nwl_atk
158.092875 | UPG Physiorecv Ingress Nwl_atk
158.092952 | UPG Msgsent Ingress Nwl_atk
158.092984 | UPG Waitphysio Ingress Nwl_atk
158.097979 | DEC Aftermidframe Ingress Nwl_atk
158.098112 | DEC Controllerrecv Ingress Nwl_atk
158.098193 | DEC Msgsent Ingress Nwl_atk
158.098232 | DEC Waitphysio Ingress Nwl_atk
158.098298 PIO Msgrecv Ingress Nwl_atk
158.098331 PIO Endlog Ingress Nwl_atk
158.098368 PIO Pre_sent1553 Ingress Nwl_atk
158.098467 PIO Sent1553 Ingress Nwl_atk
158.098499 PIO Wait1553 Ingress Nwl_atk

To minimize the impact of collecting this performance data, each logging call simply places a
timestamp in a shared memory buffer that persists after the test run is complete. Each timestamp
is a structure of binary data, 12 bytes long, containing 2 longs (time) and 4 chars: (event message
source, event message, calculation state, and attack phase state).

76

The F-16 OFP uses a cyclic executive designed to run frames at 50 Hz with a frame time of 20
ms. It triggers the PC to run by sending data at the 50 Hz rate, thus running the PC in lockstep
with the OFP. The information in Table 13 shows a one-frame event log.

The Endlog messages occur four times in each 20-ms frame. They are executed immediately
after the previous log message. The time difference between the Endlog and previous timestamp
represents the total time for logging a single event message, including hardware interrupt to the
STAT card, context switches between OS tasks, etc.

The Waitl 553 message is printed at the top of the process loop in physical I/O, awaiting the data
from the 1750. The Pre_recvi553 is logged after the 1553 card signals arrival of the data but
before the actual retrieval of the blocks of data, with the RecvI553 being logged immediately
after retrieval of the data. The delta provides time data on the speed of the Excalibur 1553 card.

The Pre_msgsent and Msgsent pair in physical I/O bracket the call to the publish routine in the
publisher/subscriber message system. The delta between the Msgsent in physical 1/O and the
Physiorecv in decision module (DEC) represents the time for a context switch between the two
processes and the time to pull the data out of the subscriber's message queue.

Beforemidframe signals the time of suspension of the DEC. The delta-time in SIM and UPG
between Physiorecv and Msgsent reflects the time to compute the tracking and targeting solution
for this frame. The time between UPG Waitphysio and Aftermidframe reflects the time in which
DEC is still suspended and represents the “slack”™ or free time.

The interval from Aftermidframe to Controllerrecv in DEC is the time to retrieve all the messages
out of the subscriber queues from baseline and upgrade. The interval between Controllerrecv to
Msgsent represents the time to evaluate the safety, baseline, and upgrade controller data, make a
selection of which controller to use, and publish the data to the physical 1/O process.

The physical I/O receives the message and the difference between Pre_sent1553 and Sent1553 is
the time for the 1553 card to output the data to its buffers.

In terms of statistical sampling rates, there were 750 frames of data captured in each of four test
runs: baseline controller only, baseline controller with upgrade experiencing a fault (two runs),
and baseline and upgrade controllers without fault. The data from the four samples were
consistent. Tabular data for this report is from the last test run, with a few values from the
baseline provided only for comparisons.

6.3.1.2 Data Analysis: Logging and Middleware Components

Several individual items were of interest, including the performance of the publisher/subscriber
message queues and the decision controller. These time values are shown in Table 14. Before
analyzing these it was necessary to determine just how much CPU time the call to the STAT card
and data logging activity was “interfering” with the normal processes.

77

The time to log event messages was 0.031 ms. The fifth row shows the times adjusted for the log
activity.

Table 14. Middleware Data

Log | Publish | Subscribe | Drain | Check
Time Msgs | Data

Average |[0.031] 0.109 0.074 | 0.134 | 0.082
Std Dev [0.002 | 0.002 0.003 0.003 | 0.002
Min 0.028 | 0.107 0.072 | 0.131 | 0.080
Max 0.046 | 0.122 0.129 | 0.151 | 0.096
Adjust
for log 0.078 0.043 0.103 | 0.050

Utilzn %) | 0.16 | 039 | 021 | 051 | 025

* Times shown in milliseconds
*% Utilization based on 20 ms frame

Of interest in determining middleware overhead is the time of 0.078 ms to publish versus the time
of 0.043 to subscribe. Unfortunately, it is not possible to gather the exact time for the access of
the queues. The publish activity is from the Physical I/O which has three subscribers (DEC, SIM,
UPG). The subscribe by DEC is the first action after the publish but includes a process context
switch as well as the queue access.

The Drain Msgs activity is within DEC and has no context switch. This process gathers the
information from the SIM and UPG controllers via the message queues, but there is extra
processing that occurs in this loop, and the total time is 0.103 ms. The Drain Msgs loop in the
“baseline only” test run has a time factor of 0.073, which suggests that the actual queue access
time is on the order of 0.030 ms. This is speculative but should be reasonably close.

Based on these data points it could be assumed, since the publish takes 0.078 ms and has three
receivers, that the time to send individual messages could be on the order of 0.025 or less. While
more test runs with other log points could firm up the publisher/subscriber time factors, the
overall numbers are impressive enough in terms of their utilization rates that we can conclude that
there is little penalty in the use of this messaging technique between processes.

The Check Data time of 0.050 ms represents the heart of the fault-tolerant feature of INSERT. It
is here that the boundary conditions are run against the proposed output data of safety, baseline,
and upgrade. A 0.25 percent utilization factor demonstrates minimal impact to the overall system
resources. Our version was not very robust for this experiment, but even a tenfold growth in CPU
time would be acceptable. This code is basically a series of comparisons between minimum and
maximum values. Generally, CPU memory accesses and comparisons on most COTS processors
require between 2 and 8 cycles each. (Of course, for a processor running 233,000,000 cycles per
second, the time for each additional boundary check would be negligible.)

78

6.3.1.3 Data Analysis: Avionics Algorithm Processing

The processing time (shown in Table 15) is measured between the Pre_recv1553 and the
Sent1553 events. This represents the entire PC processing cycle out of the 20 ms frame. The 21
message logs provide the data points that allow computation of the actual processing time as
5.756 ms. However, as stated previously, the decision module sets a midframe delay of 6 ms to
provide time for the controller variants to execute. One can see that most of the end-to-end
execution is spent in sleep mode. By factoring out the delay, the actual processing time is 0.806
ms for a utilization of 4.03 percent. This is an extremely small CPU load for the algorithm plus
associated overhead.

The actual avionics calculations are included in the baseline and upgrade controllers. These
accept the data from the 1750 via the previously described processes and calculate the new
information to be forwarded to the flight controls. Typical data includes inertial navigation
accelerations, target bearing and distance, A/C heading, directional axes, airspeed, G-loading, and
predicted bomb impact. The calculations involve a third order Runge-Kutta integration to predict
the trajectory and impact point of a given ballistic based on aircraft parameters.

As can be seen, the core calculations require only about 0.05 ms to complete. The 1553 task has
0.194 ms and 0.07 ms to receive and send. The difference here is attributed to the data sizes. The
PC receives from the GAC about 2.5 times as much data as it sends back.

it should also be mentioned that the times do not totally reflect the actual performance of the
1553 card. The data had to be unpacked and packed as part of the PC's 1553 task. This was
precipitated by two differences between the 1750 and Intel CPU's: floating point representation
and endian storage. Floating-point values require two 1553 words, and the words were converted
on the PC side of the 1553 data bus to accommodate the two differences.

The floating point representations for the 1750 and Intel can be seen in Figure 29 and Figure 30
with the Intel adhering to ANSI/IEEE 754-1985. In addition to different byte ordering, the
exponent is represented in sign-magnitude form on the 1750, while ANSI uses an excess-N
notation, sometimes called biased form.

MSB LSB
S Mantissa Exponent
31 30 87 0

Figure 29. 1750 FP Format

MSB LSB
S Exponent Mantissa
31 30 23 22 0

Figure 30. ANSI/IEEE 754 FP Format

79

Finally, the data storage across address spaces had to be corrected. The 1750 byte ordering of
stored data is big-endian, which has the most significant byte of a number stored at the lower

address when those data span multiple addresses. The Intel architecture uses little-endian

addressing.

By deducting the AMAS and 1553 execution times from the processing time, it is possible to
determine the processing for all of the associated message queues, process context switches, and
decision switch logic. The “cost” of the fault-tolerant INSERT middleware is about 2.2 percent.
The middleware utilization for the first test run that has only the baseline controller active is 1.73
percent. This difference would suggest that the cost of adding extra controller variants would

increase the middleware expense by about 0.50 percent for each. As a point of note, the

execution of the decision logic rules shown in Table 15 requires 0.05 ms, which accounts for
about 10 percent of the middleware time, and this would grow as more boundary checking and
the number of controller variants are added.

6.3.1.4 Excess Processing Availability
Certainly the use of COTS CPUs and RTOSs provide a major increase in capability compared
with the MIL-STD-1750A. 1t should be pointed out that our choice of 6 ms for a midframe delay
was arbitrary. In reality it could be shortened even more, for it needs to occur only after the
controller variants have had sufficient time to execute. Its delay is timed to check controllers that

may have experienced hard failures and will not be publishing any data.

Table 15. Processing Times and Middleware Utilization

Process |Midframe [Proc Time |Baseline [Upgrade Receive |Send [AMAS+1 |Middleware
Time Delay Less Delay |Controller [Controller [1553 1553 [°33

Average [6.412 4.981 1.432 0.082 0.083 0.226 0.101 [0.491 0.940

Std Dev [0.030 0.034 0.009 0.009 0.004 0.003

Min 6.138 4.685 0.074 0.075 0.193 0.099

Max 7.041 5.546 0.118 0.125 0.241 0.128

Adjust

for log 5.756 4.950 0.806 0.050 0.052 0.194 0.070 [0.366 0.440

Utizn (%) |28.78% 4.03% 0.25% 0.26% 097% [0.35% |1.83% |2.20%

* Times shown in milliseconds
** Utilization based on 20 ms frame

Likewise, the midframe delay could be pushed back to the end of the frame, allowing for

significant growth in the number and size of the controller variants. As long as the decision
controller can execute, respond to physical /O, and send the 1553 data in time for the GAC to

pick it up, the necessary deadlines can be met.

The collection of timing data shows that the INSERT approach with accompanying middleware
requires a relatively small amount of additional computing resources. This cost is easily offset by
the additional reliability and maintainability benefits that result from the INSERT architectural

approach.

80

6.3.2 Efforts to Migrate JOVIAL to C++ via UML
6.3.2.1 Manual Conversion Effort

This study yielded some very interesting data on the conversion from legacy code to UML

format. The effort to extend the Rhapsody environment and libraries to target LynxOS, create the
Rhapsody OO models, transfer the previous C declarations and constructs to the Rhapsody model
can be seen in Table 16.

Table 16. Engineering Effort for UML

TASK Hours
1. Review AMAS document 6.8
2. Review AMAS C code 3.2
3. Create Rhapsody model 8.0
4. Move AMAS C to new model 49.8
5. Setup LynxOS for Rhapsody models 68.0
6. Move AMAS C++ to LynxOS and compile 5.0
7. Integrate and test 20.0

TOTAL| 155.8

it should be reiterated that tasks 1, 2, and 3 were accomplished by a young engineer not
associated with the project but very knowledgeable of UML and the Rhapsody tool. This use of
personnel was selected to provide more realistic data points on what a “from scratch” re-
engineering effort would entail.

As noted earlier, task 5 represents a one-time-only set up cost associated with each new target.
As such the setup costs would not factor into scale up extrapolations to estimate the conversion
costs of the entire OFP. Therefore the effort to produce the C++ code only is 87.8 hours!

6.3.2.2 EISR Tool Conversion Effort

For the second experiment the data can be seen in Table 17. At the time of this writing, we are
awaiting simulator availability to complete the integration and test. We have no reason to expect
more than a 20-hour additional effort. Given that assumption, the difference between the
experiments, 88 vs. 136 hours, is due to the differences between the C source code provided to
the engineer.

In the first experiment, we used the final design structured C code that had been hand-massaged

to get it organized for INSERTion into Simplex. In this second, the C code was a mirror image of
the JOVIAL code with all of its “spaghetti like” quality and COMPOOLS. Thus the engineer had
to spend more time reworking the C code. The second experiment has an effort that is more
representative of what is involved to start with JOVIAL and end up with a C++ equivalent using
two COTS modeling/programming tools.

6.3.2.3 Code Growth: Procedural to OO Paradigm
In addition to the labor effort, something can be learned about the “code overhead” from C versus
C++ as well as the Rhapsody run time support. Table 18 provides the data on those changes.

81

Table 17. Second Engineering Effort for UML

TASK Hours
1. Convert JOVIAL to compilable C 24.0
2. Task explanation 0.4
3. Review AMAS document 59
4. Review material on EDCS web 32
5. Review AMAS C code 3.7
6. Create Rhapsody model 22.4
7. Move C code to new model 41.4
8. Move AMAS C++ to LynxOS, compiling and 14.8
correcting errors
9. Final integration and test TBD

TOTAL 115.8

Table 18. Code Growth Metrics

Entity C Code Rhapsody- Increase (%)
Generated C++
LOC - Code Body 2,047 2,382 16
LOC - Headers 562 741 31
LOC Total 2609 3123 19
Bytes Code 145,500 158,882 09
Bytes Headers 28,321 45,558 60
Bytes Total 173821 204440 18
Bytes Executable 191,998 326,540 70

*(LOC - Lines of Code)

As one would expect, there is some additional overhead associated with the OO paradigm versus
the procedural paradigm. This modest increase in code size is offset by the advantage of
Rhapsody generating all the logic for associations between classes, header specifications, and
state model implementation. There is a labor savings since the detailed coding at this level
requires no hours to create.

In the C++ language, much more information is contained in headers than the information in the
headers of traditional C language and this fact is reflected in the larger byte size of the C++ files.
Estimates of lines of code were determined by eliminating blank lines and comment lines. Of
biggest note is the growth in the size of the executable file. The Rhapsody libraries provided
more run-time support than would be seen in more conventional C++ libraries, such as messaging
for events between state machines, state machine transition actions, association connections, and
Accessor/Mutator functions. These auto-generated items result in a larger overhead.

However, it is this author's opinion that the size is more than acceptable in today's hardware
environments of large size DRAMSs and high-speed processors. This perceived disadvantage of a

82

slightly larger executable is more than offset by the advantage of future maintainability of
projects using the UML models rather than direct C++ code modules.

it was obvious that Rhapsody provided a very good visual framework in which to plug the legacy
code. The system's autocode generation is very fast, complete, and precise. In fact, an
accomplished C programmer having no C++ experience but rudimentary training of the UML
paradigm and Rhapsody tool could easily convert any C program into a C++ system. The tool
handles all of the syntactic details of the C++ language and accurately generates the code from
the graphical models. This allows the programmer to concentrate at a higher level of abstraction,
“making certain the actions and behaviors are right”’[54, 55].

6.3.2.4 Level of Effort Metrics

The 787.8-hour effort of manually converting JOVIAL to final C++ when compared to the re-
engineering effort of 1,088 hours from Block 25 JOVIAL to Block 40 JOVIAL is only a fraction
at 72.4 percent. That represents about a 30 percent reduction in coding costs even using manual
translation techniques for the JOVIAL to C phase.

Using the Xinotech JOVIAL to C conversion system, instead of a 787.8-hour effort, the total time
to convert this algorithm from JOVIAL to UML to C++ running on a COTS CPU requires 136

hours. That represents a cost savings of 87.5 percent front to end.

Using another metric, the cost per line of code would be 4 lines of code per hour using the manual
conversion of JOVIAL, and 23 lines of code per hour using the Xinotech tool. Extrapolating that
process to the conversion of the entire OFP, we would expect that the entire OFP could be
converted to C++ in approximately 5500 man-hours. It could be argued that scale up of this
process might not be linear, but even using a conservative estimate, it would be realistic to expect
an 80 percent cost savings for the entire OFP using this methodology and tool set.

6.3.3 Evaluation of ASEP Platform for INSERT FT Capabilities

6.3.3.1 Introduction

This is a discussion of how to use the ASEP to execute INSERT analytic redundant units (ARU,
or baseline/upgrade variants) and a decision module (DM) to allow for future, reliable upgrade of
the mission systems applications.

The INSERT approach is for the baseline variant to run at a higher priority than the upgrade
variant. The DM runs at a higher priority than both variants and is activated at the beginning of a
frame in which the two variants run, but then suspends for a predetermined time. It is awakened
prior to the end of the frame to evaluate the data provided by the two variants and make a
selection of the correct leader.

6.3.3.2 ASEP Concepts

The context in which mission systems applications run is ASEP. The ASEP is a middleware
layer that controls interfaces to the COTS RTOS and hardware platform, precluding the use of
platform-specific APIs. The ASEP promotes standardized patterns for accomplishing a given
task, avoiding the problem of different developers using different structures. Application
programs are isolated from each other through memory protection and privilege levels. Each
application can be thought of as running its own copy of ASEP.

83

The ASEP provides frame-based scheduling and anonymous, labeled messaging. The ASEP
frames consist of rate groups, each of which operates as a separate thread of execution. Rate
group threads are prioritized such that higher rate groups have higher priority than lower rate
groups; lower rate groups are, therefore, preemptable. The ASEP scheduling services are
anonymous, which means that applications identify themselves to ASEP by address during
initialization, and are called back on the rate group thread that they request.

The ASEP messaging operates in a similar fashion in that applications sign up for messages
during initialization and are called back at the top of the frame following the one in which the
message has arrived. The ASEP (and, by extension, the application) has no knowledge of the
source of a received message. There is also the concept of a blocking message, which has
associated with it a dedicated, high-priority thread on which an application will be notified
immediately of the arrival of the message at a priority higher than that of any of the rate groups.
Messages are sent in chains; when an application makes use of the ASEP “send message” service,
the message is placed into a chain of messages which is transmitted at the end of the current
minor frame. The ASEP also provides a service to enable an application to send a message and
have it transmitted immediately.

Specifics of the ASEP service calls, as well as examples of how ASEP services are used, can be
found in the ASEP Application Programming Interface, and the ASEP Users Guide.

6.3.3.3 INSERT Implementation under ASEP

Each of the variants and the DM should run as separate applications; that is, they should run in
separate address spaces. If one of the variants fails, the other would be able to continue running.
In an RTOS like Integrity, this would be accomplished by running each variant and the DM as
separate programs, each in its own virtual memory space. In a Unix-like environment, each of
the variants and the DM would simply be separate processes. All communication between the
three programs would be through labeled messages.

Each of the variants would need to define a message destined for the DM and the message would
contain enough information for the DM to make its decision. The decision rules would, therefore,
necessarily reside in the DM. The messages wouldn’t have to be identical in structure, but the
DM would need to be smart enough to distinguish between them in order to correctly evaluate the
results reported by each variant. The simplest way to accomplish this would be to use a different
label for each variant’s message.

Since the variants should be able to run stand-alone (i.e., without the existence of the DM or
another variant), each variant needs to be able to communicate its results via labeled messages to
the rest of mission systems in the absence of a DM. When a DM is present, mission systems
should get these results from the DM itself. The actual source of the information is irrelevant to
mission systems because all ASEP messaging is anonymous.

So there needs to be some way of interposing the DM between the variants and the rest of mission
systems with regard to flow of information. This could be accomplished through conditional
compilation or through some kind of configuration file that the variants would read at run time to
instruct them as to how to report their results. Either method requires that this capability be
designed into each and every algorithm that has the potential to be upgraded.

84

Since most operating systems provide no way to assign priorities at the address space level,
achieving the desired prioritization of the two variants and the DM could be done in one of two
ways:

1.

All three of the applications could be run at the same priority. Communication from the
variants to the DM would be through blocking messages, which are handled at a priority
higher than that of any rate group thread within a program. This approach would be the
simplest, but does not guarantee the order of execution of the two variants. There is also no
consideration for the DM “waking up” to evaluate whether both variants have finished their
computations on time.

Since priorities are assigned at the thread level across all programs running on the same CPU,
the priorities of the DM’s and each variant’s threads could be adjusted to make the DM’s
threads higher priority than the baseline variant’s, and the baseline’s threads higher priority
than the upgrade variant’s. Within ASEP, thread priorities are assigned by the frame manager
and are derived by taking a base priority (at which the frame manager itself runs), and adding
a fixed offset iteratively for each rate group thread. The base priority and the offset are
currently hard coded but could be made configurable through the program configuration file
that ASEP uses during initialization. Each program has a unique program configuration file.
By making the DM’s base priority higher than that of the baseline variant, and the baseline’s
priority higher than that of the upgrade variant, the three applications would run with the
desired prioritization. Of course, this prioritization would have the desired effect only if all
three programs were running on the same CPU.

The DM presents a unique problem in that it needs to “sleep” while the two variants perform their
computations, and then wake up before the frame completes in order to evaluate the results (or
the lack thereof). One of the basic premises of ASEP is that applications are not permitted to
block rate group threads. This ground rule is intended to ensure that RMA can be used to ensure
system schedulability. There are two potential solutions to this problem:

1.

if the algorithm under evaluation runs at a lower rate, it may be permissible to run the DM at
a rate at least twice that of the variants. The variants would use normal messages to report
their results to the DM. The DM could either evaluate results every other frame, or could use
a ASEP timer to determine when it is time to evaluate results (note that there are resolution
considerations with ASEP timers). With this method, the results of the “winning” variant
would be reported to mission systems in the minor frame following the completion of the
variants, not in the same frame. Thus, there would be some time delay between the
completion of the computations and the availability of the results. This may or may not be
acceptable, depending on the nature of the algorithm.

If the algorithm under evaluation runs at the highest rate, or if it is necessary to make the
results of the algorithm available within the same frame in which they are computed, the DM
could be run at the same rate as the variants and allowed to block and “sleep” for a fixed
period of time during the frame. This time period would have to be less than the frame
duration minus some small amount to allow for ASEP overhead and DM computation time.
This method assumes that the DM runs as a separate program in its own address space, and
that there is nothing in the DM that runs at a higher rate than that portion which blocks its rate
group thread; that is, no higher priority rate group threads are active. The variants would
need to send their results to the DM using immediate, rather than chained, messages; the DM
would need to use blocking messages to receive these results, since blocking messages are
processed on dedicated, high-priority threads. This would allow for same-frame
communication between the variants and the DM. The RMA schedulability analysis would

85

not be possible with a DM that uses this method, but this is probably not a major concern
during an evaluation phase.

6.3.3.4 Rehost of ASEP to LynxOS and LINUX/RT

In order to evaluate the success of the ASEP fault-tolerant techniques, it was necessary to take the
existing baseline of C++ code that represents the middleware and port it to two different
operating systems: LynxOS and the open source product, LINUX, with the real-time extensions
provided by Timesys Corporation. The original ASEP test bed is based upon PowerPC Single
Board Computers (SBC) with the Integrity RTOS by Green Hills Software.

The ASEP middleware was modeled in UML with the Rhapsody toolkit. This allowed us to
leverage the prior re-engineering work on AMAS and target the two operating systems. By
porting ASEP to these, we could eventually tie this ASEP test bed into the AFTI simulator and
running the re-engineered (UML version) of AMAS under a Fault Tolerant (FT) ASEP.

Retargeting the two new RTOSs involved about 300 hours of effort, adding conditional defines

for Lynx and LINUX to the existing model that supported Solaris, VxWorks, and Integrity to
ensure that the OS-specific system calls would be compiled. Preliminary experiments with the
LINUX/RT indicate that it was a highly capable product with full preemptive priority-based
scheduling support. Informal test suits run against the Lynx RTOS on the LINUX/RT had similar
results.

Notionally this test bed would appear as shown in Figure 31.

ASEP
Publisher / Subscriber

Intel w/ Linux/RT
Intel w/ LynxOS

1553(B)
Data Bus

Figure 31. ASEP/AMAS Test Bed
At the time of this report, that effort is not complete due to two factors. The first is that while we

have built the ASEP on the LINUX/RT machine and have run test suites, ASEP is not built on
Lynx. Although both use the GNU compilers, the compiler supplied with Lynx, even for 3.0.0,

86

will not support C++ namespaces. Two approaches would be to get a later version of Lynx and
its compiler or modify the UML model to not use namespaces.

The second difficulty is the unavailability of the AFTI Simulator. Given the time remaining
under contract and the AFTI schedule, the simulator will not become available until after this
contract expires.

6.4 Conclusions
6.4.1 INSERT Fault-Tolerant Technologies

The INSERT technology has demonstrated itself to be scalable to major weapon system avionics
software. Initially developed at the SEI for providing software fault tolerance, its clean
architecture and COTS approach enables its application to many software application domains.
Under DARPA's EDCS, this research has demonstrated the feasibility of using this technology to
start with a reliable baseline algorithm, wrap it in the INSERT architecture, and then safely and
reliably implement new functionality with minimal testing.

Along the same lines, one could use this architecture to “design a little, build a little, test a little”
software development approach in real-time systems. A design team could use the INSERT
Architecture to “bootstrap” an OFP from the ground up with highly reliable interim versions.

6.4.2 Legacy Conversion to C++

This effort to port a legacy C algorithm to a UML model and to executable code proved to be one
of the most straightforward and low cost conversions this author has ever personally encountered,
both with the LM organization and in other commercially based companies. Conservatively,
large scale migration from legacy JOVIAL code to modern, COTS-supported C++ languages,
mcluding UML model representations, could easily be achieved at 80 percent reduction in costs,
compared to other methodologies.

In this phase of the INSERT research project, we re-engineered the AMAS algorithm from
JOVIAL to C code to a UML model in the Rhapsody tool to a C++ code that compiled and
executed on the LynxOS PC. The growth rates of the size of the source code in that transition
ranged from about 109 percent to 160 percent, depending on which metric is applied. The
conversion rate of the conversion from the original AMAS algorithm in JOVIAL to the final C++
version was four lines of code per hour. The effort to go from a JOVIAL version to the UML /
C++ executable was achieved at 23 lines of code per hour. Note that all of the code came out of
the Rhapsody model syntactically correct and ready to compile. Very minimal
modifications/additions were required after generation and the code compiled and executed
correctly on the target system.

6.4.3 ASEP Fault Tolerance

The mvestigations into the ASEP middleware could be completed only through study and
analysis. Reductions in funding on the contract resulted in insufficient funding to implement the
proposed changes and test them on the testbed. However, due to the early influence of INSERT
concepts on the ASEP design, the merger of these fault-tolerant techniques should be
straightforward.

87

7. Cost Reduction Benefits of INSERT Technology

7.1 Introduction

The cost benefits associated with applying INSERT technologies to DoD embedded applications
were determined using design data obtained from project demonstrations. The SEER-SEM is the
official software estimation model used by Lockheed Martin Aeronautics Company. This model
was employed to substantiate both labor and schedule savings associated with the use of
INSERT.

7.2 Background

A key accomplishment of the INSERT project was a successful rehost of a high assurance DoD
application within an innovative fault-tolerant software framework (i.e., the INSERT
middleware). An advanced attack guidance algorithm was rehosted on INSERT middleware and
mtegrated into a full resolution, ground-based F-16 avionic system simulator. Subsequent
performance evaluation verified correct algorithm operation and failsafe operation in response to
a variety of injected faults.

Then INSERT framework reduces development cost through reuse (i.e., the fault tolerance
framework) and reduction in the amount of required application testing. Such reductions can be
directly accounted for in the SEER-SEM estimation model. The following application
characterization data was input into the SEER-SEM estimation model to construct three runs:

The guidance application size was 4,000 LOC. Industry standard productivity parameters were

applied throughout all runs.

1. Control Case: This baseline case assumes no reuse and full (100 percent) testing effort.

2. Case 1: This case assumes 20 percent design reuse and 15 percent implementation reuse
based on actual code counts from the INSERT project experiments.

3. Case 2: This case assumes 20 percent design reuse, 15 percent implementation reuse, and a
15 percent reduction in testing based on actual code counts and analyses from the INSERT
project experiments.

7.3 Results

A comparison of the Control Case and Case 2 provides the best indication of INSERT benefits.
The results show that the INSERT technology application can reduce the software development
effort by 20 percent and developmental span time by 7.2 percent under the stated conditions.

Table 19. Run Results in the SEER-SEM Estimation Model

Run Total Size Hours Months
Control 4,000 4,204 16.36
Case 1 4,000 3,618 15.56
Case 2 4,000 3,362 15.18

88

7.4 Additional Details

The SEER-SEM parameter settings used for the three runs are shown in the following table:

Table 20. SEER-SEM Run Parameters

WBS Element Description

Control
LINES (Classic)
New Lines of Code 4000 4000 4000
Pre-exists, not designed for reuse
Pre-existing lines of code NDR 0 0 0
Lines to delete in pre-exstg NDR 0.0% 0.0% 0.0%
Redesign required Lines NDR 5.0% 10.0% 40.0%
Reimplementation req. Lines NDR 1.0% 5.0% 10.0%
Retest required Lines NDR 10.0% 40.0% 100%
Pre-exists, designed for reuse
Pre-existing lines of code DFR 0 0 0
Lines to delete in pre-exstg DFR 0.0% 0.0% 0.0%
Redesign required Lines DFR 1.0% 5.0% 10.0%
Reimplementation req. Lines DFR 1.0% 1.0% 5.0%
Retest required Lines DFR 5.0% 10.0% 100%

Function Implementation Mech. 3" Generation Languages

Programs Included in Size 1 1 1
PERSONNEL CAPABILITIES & EXPERIENCE

Analyst Capabilities Low Nom Hi
Analyst’s Application Experience Nom- Nom Nom+
Programmer Capabilities Low Nom Hi
Programmer’s Lang. Experience Nom Hi VHi
Host System Experience Nom Hi VHi
Target System Experience Nom Hi Hi
Practices & Methods Experience Nom Hi VHi
DEVELOPMENT SUPPORT ENVIRONMENT

Modern Dev. Practices Use Nom Hi Hi+
Automated Tools Use Hi- Hi+ Hi+
Logon thru Hardcopy Turnaround VLo Low- Nom
Terminal Response Time Low- Hi- Hi
Multiple Site Development Nom Nom Nom
Resource Dedication Nom Nom Nom
Resource and Suppoort Location Nom Nom Nom
Host System Volatility Nom Nom Nom
Process Volatility Low Low+ Nom
PRODUCTION DEVELOPMENT REQUIREMENTS
Requirements Volatility (Change) Nom Nom Hi
Specification Level — Reliability Hi+ VHi- VHi

Case 1 (Full Retest)

0 0 0
4000 4000 4000
0 0 0
80.0% 80.0% 80.0%
85.0% 85.0% 85.0%
100% 100% 100%
0 0 0
0 0 0
1.0% 5.0% 10.0%
1.0% 1.0% 5.0%
5.0% 10.0% 100%

3" Generation Languages

Low Nom Hi
Nom- Nom Nom+
Low Nom Hi
Nom Hi VHi
Nom Hi VHi
Nom Hi Hi
Nom Hi VHi
Nom Hi Hi+
Hi- Hi+ Hi+
VLo Low- Nom
Low- Hi- Hi
Nom Nom Nom
Nom Nom Nom
Nom Nom Nom
Nom Nom Nom
Low Low+ Nom
Nom Nom Hi
Hi+ VHi- VHi

89

Case 2 (Limited Retest)

0 0 0
4000 4000 4000
0 0 0
0.8 0.8 0.8
85.0% 85.0% 85.0%
85.0% 85.0% 85.0%

0 0

0 0
0.01 0.05 0.1
1.0% 1.0% 5.0%
5.0% 10.0% 100%

3" Generation Languages

Low Nom Hi
Nom- Nom Nom+
Low Nom Hi
Nom Hi VHi
Nom Hi VHi
Nom Hi Hi
Nom Hi VHi
Nom Hi Hi+
Hi- Hi+ Hi+
VLo Low- Nom
Low- Hi- Hi
Nom Nom Nom
Nom Nom Nom
Nom Nom Nom
Nom Nom Nom
Low Low+ Nom
Nom Nom Hi
Hi+ VHi- VHi

WBS Element Description Case 1 (Full Retest) Case 2 (Limited Retest)

Control
Test Level Hi+ Hi+ VHi Hi+ Hi+ VHi Hi+ Hi+ VHi
Quality Assurance Level Hi- Hi+ VHi Hi- Hi+ VHi Hi- Hi+ VHi
Rehost from Dev. to Target Nom Hi VH+ Nom Hi VHi+ Nom Hi VHi+
PRODUCT REUSABILITY REQUIREMENTS
Reusability Level Required Nom Nom Nom Nom Nom Nom Nom Nom Nom
Software Impacted by Reuse 100% 100% 100% 100% 100% 100% 1 1 1
DEVELOPMENT ENVIRONMENT COMPLEXITY
Language Type (complexity) Nom Nom VHi Nom Nom VHi Nom Nom VHi
Host Dev. System Complexity Nom Nom Nom Nom Nom Nom Nom Nom Nom
Application Class Complexity Nom- Nom Nom+ Nom- Nom Nom+ Nom- Nom Nom+
Process Improvement Nom Nom Nom Nom Nom Nom Nom Nom Nom
TARGET ENVIRONMENT
Special Display Requirements Hi Hi+ VHi Hi Hi+ VHi Hi Hi+ VHi
Memory Constraints Hi- Hi Hi+ Hi- Hi Hi+ Hi- Hi Hi+
Time Constraints Nom Nom Nom+ Nom Nom Nom+ Nom Nom Nom+
Real Time Code Nom Hi- VHi Nom Hi- VHi Nom Hi- VHi
Target System Complexity Nom Nom Nom Nom Nom Nom Nom Nom Nom
Target System Volatility Hi- Hi Hi+ Hi- Hi Hi+ Hi- Hi Hi+
Security Requirements Nom Nom Nom Nom Nom Nom Nom Nom Nom
SCHEDULE & STAFFING CONSIDERATIONS
Required Schedule (Cal. Mos) 1/0/00 0 0
Start Date 9/27/00 9/27/00 36796
Complexity (Staffing) Nom+ Hi- Hi+ Nom+ Hi- Hi+ Nom+ Hi- Hi+
Staff Loading VHi VHi VHi
Min Times Vs. Opt. Effort Optimal Effort Optimal Effort Optimal Effort
RISK ANALYSIS
Effort Probability 50.0% 50.0% 0.5
Schedule Probability 50.0% 50.0% 50.0%
REQUIREMENTS
Requirements Complete at Start Low Low Low
Requirements Definition Formality Nom Nom+ Hi+ Nom Nom+ Hi+ Nom Nom+ Hi+
Reqt’s Effort After Baseline YES YES YES
SYSTEM INTEGRATION
Programs Concurrently Integrating 1 1 1
Concurrency of [&T Schedule Hi Hi Hi
Hardware Integration Level Hi VHi VHi Hi VHi VHi Hi VHi VHi

90

10.

11.

12.

13.

14.

15.

16.

References

L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving Dependable Real-Time Systems,” [FEE
Aerospace Applications Conference, Aspen, CO, Feb., 1996, New York, NY: IEEE
Computer Society Press, 1996. Also published in “Component-Based Software Engineering,”
Selected Papers from the Software Engineering Institute, Alan Brown, ed., IEEE Computer
Society Press 1996 (ISBN 0-8186-7718-X).

M. Bodson, J. P. Lehoczky, R. Rajkumar, Lui Sha, M. Smith, and J. Stephan, “Software fault-
tolerance for control of responsive systems,” Third Intemational Workshop on Responsive
Computer Systems, pp. 133-141, 1993,

P. Feiler, et al., “Simplex: A Technology for Rapid, Reliable Upgrade,” Tutorial, Software
Engineering Institute, 1998.

M. Gagliardi, et al., “Simplex Case Study: The Defensive Information Assurance/Warfare
Prototype,” Technical Report, Software Engineering Institute, 1999.

Ken Birman and Keith Marzullo, “The ISIS Distributed Programming Toolkit and the Meta
Distributed Operating System,” SunTechnology 2, 1, 1989.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The Information Bus — An Architecture for
Extensible Distributed Systems,” ACM Symposium on Operating System Principles, 1993.
F. Cristian, “A probabilistic approach to distributed clock synchronization,” Distributed
Computing 3, pp. 146-158, 1989.

L. Sha, R. Rajkumar, and M. Gagliardi, “The Simplex Architecture: An Approach to Build
Evolving Industrial Computing Systems,” The Proceedings of the ISSAT Conference on
Reliability, 1994,

Raj Rajkumar, Mike Gagliardi, and Lui Sha, “The Real-Time Publisher/Subscriber Inter-
Process Communication Model for Distributed Real-Time Systems: Design and
Implementation,” Proceedings of the IEEE Real-time Technology and Applications
Symposium, June 1995,

R. Rajkumar, Synchronization in Real-Time Systems: A Priority Inheritance Approach,
Kluwer Academic Publishers, 1991.

R. Rajkumar, L. Sha, J.P. Lehoczky, “An Experimental Investigation of Synchronization
Protocols,” Proceedings of the IEEE Workshop on Real-Time Operating Systems and
Software, May 1988.

L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance Protocols: An Approach to
Real-Time Synchronization,” IEEE Transactions on Computers, pp. 1175-1185, September,
1990.

M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M.G. Harbour, 4 Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate-Monotonic Analysis for Real-Time Systems. Kluwer
Academic Publishers, 1993.

T.A. Henzinger, “The theory of hybrid automata,” Proceedings of the 11" Annual Symposium
on Logic in Computer Science, pp. 278-292, IEEE Computer Society Press, 1996. Invited
tutorial.

A. Chutinan and B.H. Krogh, “Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations,” Hybrid Systems: Computation and Control, Second
International Workshop, Lecture Notes in Computer Science, Springer-Verlag, 1999,

G. Lafferriere, G.J. Pappas, and S. Yovine, “A new class of decidable hybrid systems,”
Hybrid Systems: Computation and Control, 2" International Workshop, HSCC'99, F.W.
Vaandrager and J.H. Van Schuppen, editors, pp. 137-151, Berg en Dal, The Netherlands,
Springer-Verlag, 1999,

91

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38

. A. Chutinan. and B. H. Krogh, “Approximate Quotient Transition Systems for Hybrid
Systems,” Proc. 2000 American Control Conference, Chicago, June 2000.

A. Chutinan and B.H. Krogh, “Computing polyhedral approximations to flow pipes for
dynamic systems,” The 37th IEEE Conference on Decision and Control: Session on Synthesis
and Verification of Hybrid Control Laws (TM-01), 1998,

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled, Model Checking. The MIT
Press, ISBN 0-262-03270-8, January 2000.

Danbing Seto and Enrique Ferreira, “A Case Study on Development of A Baseline Controller
for Automatic Landing of An F-16 Aircraft Using LMIs,” August 1998.

D. Seto, B.H. Krogh, L. Sha, and A. Chutinan, “Dynamic Control System Upgrade Using the
Simplex Architecture,” IEEE Control Systems, pp. 72-80, August 1998.

A A. Rizzi, “Hybrid Control as a Method for Robot Motion Programming,” [EEE Int'l. Conf.
on Robotics and Automation, Leuven, Belgium, pp. 832-837, May, 1998.

S. Kowalewski, S. Engell, J. PreuBig, and O. Stursberg, “Verification of logic controllers for
continuous plants using timed condition/event-system models,” Automatica 35, pp. 505-518,
1999.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A Model Checker for Hybrid
Systems,” Software Tools for Technology Transfer, Vol. 1, pp. 110-122, 1997,

C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool kronos,” Hybrid Systems II1:
Verification and Control, R. Alur, T. A. Henzinger, and E.D. Sontag, editors, pp. 208-219,
Springer-Verlag, 1996.

Johan Bengtsson and Fredrik Larsson, UPPAAL a Tool for Automatic Verification of Real-
Time Systems, DoCS Technical Report Nr 96/67, Uppsala University, ISSN 0283-0574,
January 1996.

Akash Deshpande, Aleks Gollii and Luigi Semenzato, The Shift Programming Language and
Run-time System for Dynamic Networks of Hybrid Automata, California PATH Research
Report UCB-ITS-PRR-97-7, 22 pages, January 1997.

Zohar Manna and the STeP Group, “STeP: The Stanford Temporal Prover,” Technical report
STAN-CS-TR-94-1518, Computer Science Department, Stanford University, 44 pages, July
1994,

M. Shaw and D. Garlan, “Software architecture: Perspectives on an Emerging Discipline,”
Prentice Hall, 1996, Upper Saddle River, N. J.

R. Allen, and D. Garlan, “Formalizing architectural connection,” Sixteenth International
Conference on Software Engineering, pp. 71-80, 1994,

D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan, W. Mann, “Specification
and analysis of system architecture using Rapide,” IEEE Trans. Soft. Eng., Vol. 21, pp. 336-
355, 1995.

S. Vestal, and P. Binns, “Scheduling and communication in MetaH,” Real-Time Systems
Symposium, IEEE, pp. 194-200, 1993.

M. Klein, T. Ralya, B. Pollack, R. Obenza, M. Gonzalez Harbour, “A Practitioner's
Handbook for Real-time Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems,” Kluwer, 1993, Boston.

D. E. Perry, “System compositions and shared dependencies,” Software Configuration
Management, ICSE'96 SCM-6 Workshop, pp. 139-153, 1996.

P. Feiler, J. LI, “Consistency in Dynamic Reconfiguration,” Proceedings of 4" International
Conference on Configurable Distributed Systems, May 1998, IEEE Computer Society Press.
P. Feiler, J. Li, “Managing Inconsistency in Reconfigurable Systems,” IEE Proceedings -
Software, Vol. 145, No. 5, October 1998.

L. A. Beladi, and P. M. Merlin, “Evolving Parts and Relations - A Model of System
Families,” Program Evolution, Academic Press, pp. 221-236, 1985.

. M. Hiltunen, “Configuration Management for Highly-Customizable Services,” 4"

92

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

International Conference on Configurable Distributed Systems, Annapolis, MD, pp. 197-205,
May 1998, IEEE CS Press.

K. G. Shin and H. Kim, “Derivation and application of hard deadlines for real-time control
systems,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 22, No.6, pp. 1403-1412,
1992.

M. Gagliardi, et al., “Simplex Case Study: The Defensive Information Assurance/Warfare
Prototype,” Technical Report, Software Engineering Institute, 1999.

S. Bohner, R. Arnold, “An Introduction to Software Change Impact Analysis,” Software
Change Impact Analysis, pp.1-26, edited by S. Bohner and R. Arnold.

J. Li and P. Feiler, “Impact Analysis in Real-Time Control Systems,” submitted to the
International Software Maintenance Conference, 1999,

D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-time control
systems,” 17th IEEE Real-Time Systems Symposium, pp. 13-21, 1996.

S. Vestal, “Fixed-Priority Sensitivity Analysis for Linear Compute Time Models,” IEEE
Transactions on Software Engineering, Vol. 20, No. 4, pp. 308-317, 1994,

W. Tichy, “A Data Model for Programming Support Environments and Its Application,”
Automated Tools for Information System Design, pp. 31-48, North-Holland Publishing
Company, 1982.

D. E. Perry, “Version Control in the Inscape Environment,” 9th International Conference on
Software Engineering, pp. 142-149, 1987.

E. Ploedereder, and A. Fergany, “A Configuration management Assistant,” Second
International Workshop on Version and Configuration Control, Oct. 1989, ACM Press.

D. Garlan, R. Monroe, and D. Wile, “Acme: An Architecture Description Interchange
Language,” Proceedings of CASCON'97, pp. 169-183, Nov. 1997,

R. Monroe, “Capturing Software Architecture Design Expertise with Armani,” Technical
Report, CMU-CS-98-163, School of Computer Science, Carnegie Mellon University, 1998.
C.L. Liuand J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment,” JACM 20 (1), pp. 46-61, 1973.

L. Sha and J. B. Goodenough, “Real-Time Scheduling Theory and Ada,” Technical Report
CMU/SEI-89-TR-14, Software Engineering Institute, 1989.

Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar, “Rate-Monotonic Analysis for
Real-Time Industrial Computing,” IEEE Computer 27(1), pp. 24-33, 1994.

Lui Sha and Shirish S. Sathaye, “A Systematic Approach to Design Distributed Real-Time
Systems,” IEEE Computer 26(9), pp. 68-78, 1993,

Ben A. Calloni, et al., “INSERT: A COTS-based Solution for Building High-Assurance
Applications,” Gateway to the New Millennium. 18th Digital Avionics Systems Conference
Proceedings (IEEE Cat. No.99CH37033), pp. 2.D.6-1, Oct 24-29, 1999,

Donald J. Bagert, and Ben A. Calloni, “An Icon-Based Environment for Teaching Computer
Programming,” Journal of Epistecybernetics, International Society of Epistecybernetics, pp.
49-61, Texas Tech University, Lubbock, Texas, September, 1999, Vol. 1 (01), 1999.

Ben A. Calloni, and Donald J. Bagert, “Iconic Programming Proves Effective for Teaching
the First Year Programming Sequence,” Proceedings of the 28th SIGCSE Technical
Symposium on Computer Science Education, pp. 262-266, San Jose, CA, 27 Feb.-1 Mar
1997.

93

ACRONYM

A/C
ACTL
ADL
ADT
AFRL
AFTI
AMAS
AMCOM
ANSI/IEEE
API
AQTS
AR

ARC
ARU
ASEP
ATM
CMU

COMPOOLS

COTS
CSCl
CTL
DARPA
DEC
DFIP
DM
EDCS
EISR
FFF1
FSMBs
FT

List of Acronyms
DESCRIPTION

Aircraft

“All paths?” computation tree logic
Architecture Description Languages
Abstract data types

Air Force Research Laboratory

Advanced Flight Technology Integration
Automated Maneuvering and Attack System
Army Aviation and Missile Command
American National Standards Institute/??
Application Programming Interface
Approximate Quotient Transition System
Analysis Region

Analytic Redundancy Component
Analytically Redundant Unit

Advanced Software Execution Platform
Asynchronous Transfer Mode

Carnegie Mellon University

Common Data Pools for JOVIAL Language
Commercial Off the Shelf

Computer Software Configuration Item
Computation Tree Logic

Defense Advanced Research Projects Agency
Decision Module

Data Fusion Integrity Processes

Decision Module

Evolutionary Design of Complex Software
Embedded Information Systems Re-engineering
Form, Fit, Function, Interface

Finite State Machine Blocks

Fault Tolerant

94

GAC General Avionics Computer

GNU GNU's Not UNIX

GRMA Generalized Rate Monotonic Analysis

GUI Graphical User Interface

HA Hybrid Automata

HUD Head Up Display

ICS Initial Continuous Set

INS Inertial Navigation System

INSERT Incremental Software Evolution for Real-Time Systems
iPC Interprocess Communication

LMI Linear Matrix Inequality

LMTAS Lockheed Martin Tactical Aircraft Systems

LOC Lines of Code

MDU Monitoring and Decision Unit

MMC Modular Mission Computer

NDR No Direct Replacement

NSSN National Standards Systems Network

ODE Ordinary Differential Equation

OFP Operational Flight Program

OMD Object Model Diagram

00 Object-oriented

PCMCIA Personal Computer Memory Card International Association
PIHA Polyhedral Invariant Hybrid Automata

POSIX21 Portable Operating System Interface UNIX - Standard 21
PTHB Polyhedral Threshold Block

QTS Quotient Transition System

RMA Rate Monotonic Analysis

RT Real-time

RTEMS Real-Time Executive for Multiprocessor Systems
RTOS Real-Time Operating System

SBC Single Board Computer

SCSP Switched Continuous System Block

SEER-SEM Software Evaluation & Estimation of Resources — Software Estimation Model

SEI Software Engineering Institute

95

STAT
UDP/IP User
UML

WBS

System Timing Analysis Tool
Datagram Protocol/Internet Protocol
Unified Modeling Language

Work Breakdown Structure

96

